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1.0 Introduction

The increasing need for tighter tolerances, emphasis on process control to achieve quality
in manufacturing, and the trend towards automation has resulted in the need for fast and accurate
dimensional and form measurement systems. Co-ordinate measuring machines (CMMs) have
been designed to satisfy the measurement needs of modern manufacturing. As a result, in recent
years CMMs have become the instrument of choice for dimensional measurement. CMMs
provide detailed dimensional data on most machined part surfaces. They are also capable of
determining the relationship between various part features. Since a coordinate measuring
machine acquires data on a point-by-point basis, the results obtained from an inspection need to
be analyzed to create a geometric model of the feature or features being measured (also referred
to as "substitute geometry"). This analysis is handled by algorithms whose results are strongly
dependent upon many factors, including the sampling method chosen for data acquisition, the
noise in the data, systematic deviations of the measured surface from the tdeal, systematic and
random errors in the measurement and algorithm correctness[1,2]. Therefore, though it may
appear to the user that data of high accuracy are obtained, the results reported after analysis may
contain large errors.

The overall measuring uncertainty of a CMM depends on the hardware, consisting of the
machine and the probe, the number and distribution of discrete points taken on the surface, and
the software used to process the data. There are Standards for testing the performance of
CMMs that describe tests to obtain information on machine accuracy and repeatability.
Standards for checking the algorithms used for establishing substitute geometry are being
developed [3]. In the area of sampling methods (number of points and their distribution) the
British Standard BS 7172 addresses the problem for the most important geometric elements[4].
Their recommendations is shown in Table 1. Although information is available in the areas that
contribute to the uncertainty in CMM measurement, a systematic investigation to study and to
characterize the uncertainty due to different sampling methods has not been done yet. The results
from such a study can be used to develop sampling methods for different geometric elements in
the presence of systematic and random errors on both the part and the CMMs.

This paper presents the results of an investigation of the influence of the measuring
system, sampling methods and algorithms on the inspection results of circles in CMMs. The
systematic biases in the results, due to the algorithms chosen for analysis are also identified. The
parameters that affect the measurement process and the different algorithms used for computing
the substitute geometry are first analyzed. Sampling methods for circles in CMMs are then
investigated using computer simulation. The computer simulation and recommended strategies



Element Minimum Number of Points | Comments Regarding Minimum
Mathematical Recommended | Number of Points
Line ) 5
Plane 3 9 Approximately three lines of three
points.
Circle 3 7 To detect upto six lobes.
Sphere 4 0 Aproximately three circles of three
in parallel planes.
Cylinder 5 12 Circles in four planes for
information on straightness.
15 Five points on each circle for
information on roundness.
Cone 6 12 Circles in four planes for
information on straightness.
15 Five points on each circle for

information on roundness.




are validated by measuring parts in a CMM. The following sections describe the details of the
investigation.

2.0 Parameter Identification

One of the most important task in establishing a viable measurement strategy is to
identify the parameters that affect the measurement process and the measuring system. The
various parameters that could influence the measurement strategy of a circular profile are given
in Figure 1. These parameters may be grouped in to the following categories:

A. Properties of the part
1. those that relate to geometry and tolerance
2. manufacturing process.
B. Measurement function
1. purpose of measurement
2. required confidence in the measurement.
C. Properties of the measurement system
1. systematic errors
2. random errors.

2.1 Properties of the Part

The choice of algorithm and sampling strategy is affected by the properties of the part
such as geometry, form errors, characteristics of the process used to manufacture the part,
tolerance specifications, etc. These part characteristics can be classified into those relating to
the geometric dimensioning and tolerancing of the part and those of the manufacturing process.

Geometry and Tolerance:

The initial assumption was that the most relevant parameters would be size, size
tolerance, form tolerance, surface finish and entity type (internal or external). Our experiments
showed, however, such features as the size of the part has no effect on the measurement strategy
as long as the ratio of the form error to the part size is the same. The measurement depends
only on the shape of the skin ( i. e., the outer layer) of the part, which reflects the form error.

However, the size of the feature and amplitude of the form error must be considered
when selecting the probe to be used for measurement in order to avoid filtering effects.
Especially for a small part in which the number of undulations per unit length is high, the probe
diameter should be carefully selected so that it is small enough to reach the bottom of any
undulation. This limitation is not particularly restrictive. The maximum diameter of the probe
that may be used can be estimated by computing the radius of curvature at the bottom of the sine
wave of a given amplitude. It is found that the maximum radius of the probe that can be used
for measurement is a function of the part radius, number of lobes, and the lobe amplitude, and
is given as,
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where d_,, is the maximum diameter of the probe capable of reaching the bottom of a lobe of
amplitude, A, in a part of diameter, D, with N lobes. In the presence of form error the sampling
strategy must be carefully selected when position and form error are to be evaluated. For
example, four points distributed uniformly on three lobed part will introduce error in the location
of the center and six points on a three lobed part could fail to detect the form error.

Manufacturing Process:

In general manufacturing process leaves a finger print on the surface of the part. These
fingerprints are often in the form of geometric irregularities which are often classified according
to the frequencies. Typically, high frequency components are called roughness and lower
frequency component as waviness. As a result of our literature search and survey [5] it is found
that for most manufacturing process, the dominant lobing is low order ( 2- 7) but rarely higher.
The lobe amplitude, in general, drops of dramatically with the number of undulations per
revolution. In this study only low frequency effects such as lobing is included. The probe used
in a co-ordinate measuring machine filters most of the high frequency component, making the
low frequency or the lobing effect as the predominant manufacturing process effect.

2.2 Measurement Function

The function of the measurement affects both the algorithm and the sampling strategy.
The purpose of the measurement and the required confidence are the two important aspects in
the measurement function.

Purpose of Measurement:

The purpose of the measurement affects both the choice of the algorithm and the
sampling strategy. If the purpose is tolerance verification, then the first step in algorithm
selection is to determine which algorithm is called for in the ANSI Y14.5 Standard or the
equivalent ISO standard [6,7], one would choose the maximum inscribed (circle and cylinder)
for the size of an internal feature, and the minimum circumscribed (circle or cylinder) for the
size of an external feature. The form of the same feature would be determined by the range of
the residuals using the mini-max algorithm, and the location would be established by the center
of the circle obtained by the algorithm used to establish size. For the case of process control,
the least-squares algorithms might always be the algorithm of chotce, due to their stability and
ease of computation. Once the correct algorithm is established, then the results will also be
affected by sampling particularly when it is desired to use the minimum number of points.
Consider the part shown in Figure 2., having the familiar three lobed pattern. If this part is
sampled using three points, then it is readily seen, as illustrated, that not only is it clearly
possible to obtain the wrong size, but also to completely fail to detect the form error. There is,
therefore, uncertainty on the size measurement of twice the form error and the possibility of total
uncertainty in the form error determination. A similar problem exits on the same part for
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location tolerance, when four points are used to measure its position. This is illustrated in Figure
3. The four-point sampling may give the correct radius, but the center can be offset from the
true position. In Figure 3., sampling points a, b, c, and d give a different center than sampling
points e, f, g, and h. Clearly in the presence of form error there are some sampling strategies
that yield very little confidence regarding the final result.

2.3 Properties of the Measurement System

The measurement system itself produces uncertainties that affect the sampling strategy
of choice. The parts of the system that affect the measurement results are the errors in geometry
and motion of the coordinate measuring machine and its probe. For machines which are
parametrically calibrated, detailed maps of the systematic errors can be developed and used
gither to correct the measurement results or to estimate how these errors will contribute to
apparent errors of form. Most machines now have many of these systematic errors corrected in
the machine software. The emphasis in this study is mainly on the residual systematics and any
apparently random errors that are introduced by the machine probe interaction with the part.

Systematic Measuring Machine Errors:

Most CMMs are evaluated according to American National Standard for measuring
machines, B89.1.12M -1991 [8]. As a result of this evaluation the machine user has four
numbers which allow estimates of the residual machine systematics. They are the linear
displacement accuracies of each axis and the ball bar performance. For the purpose of evaluating
the effects of these residual systematics on the measurement of circular and cylindrical geometry,
these numbers are not directly applicable. This is because the linear displacement accuracy is
performed along lines through the work zone, and the ball bar performance measured at a wide
variety of locations such that it would be extremely unlikely that the total spread in ball bar data
would ever be reflected in the measurement on a cylindrical part. Although these systematics
will contribute to apparent errors of form, they cannot be included in the analysis in any
meaning full manner,

"Random" machine errors;

In addition to the systematic geometric errors, most geometric measuring machines
exhibit apparently random errors. These errors are caused by interaction of the probing system
with machine dynamics and lack of repeatability in the probing mechanism. In order to asses the
"noise” of the measurement process, the ASME B89.1.12 probing performance test using the
probe system and probe approach rates and distances which will be used in actual measurement
must be conducted. One-half the value obtained for the working tolerance with that particular
stylus in the point-to-point probing performance test be used as the estimate for the three sigma
" noise" of the machine.

Although the parameters that affect the measurement process originate from different
sources, it is clear that form error, random error (from the part and the measuring machine),
sampling scheme and the algorithm used are the basic factors that affect the results. The effect



of these basic factors were analyzed in detail in this investigation.
3.0 Sampling Strategies and Mathematical Methods

The number of methods that one can arrive at for measuring a circular or cylindrical part,
using a coordinate measuring machine, is somewhat limited. Sampling theory is , of course well
developed in electrical engineering[9]. In measuring on a CMM, however, due to limitations in
speed, much more limited sampling is desirable. IFurther, because of software limitations, certain
sampling strategies are difficult to implement. In this investigation, uniform sampling, random
sampling, and stratified sampling has been used. Uniform sampling (also known as equi-distant
or equi-angular) is where the surface to be measured is divided into uniform intervals, such as
angles for a circle, and a point chosen at each of these intervals. Stratified sampling is a
variation of uniform sampling, where within each of the uniform intervals a random point is
selected within that interval. Figure 4. illustrates these two procedures.

3.1 Mathematical Methods

The parameterization of geometric elements used in coordinate metrology was
investigated by the British Standards Institution, while a Standard on "Assessment of Position,
Size and Departure from Nominal Form of Geometric Features” (BS 7172) [4] was developed.
This Standard clearly outlines the parameterization for various geometric elements used in
coordinate metrology. The geometric elements can be parameterized in different ways, and the
Standard claims that the parameterization chosen has the following property:

"Small changes in the geometric element usually result in correspondingly small changes
in the parameter values".

Circles in a Specified Plane:
The parameterization, as outlined in BS 7172 [9] for a circle, is

"A circle C in the plane should be specified by its center, (x,,Y,), and its radius, r.
NOTE 1. Any point (x,y) on C satisfies the equation:

(x-x,)2+(y-y,)%=r2 (2)

NOTE 2. Numerical inaccuracies are likely to arise in the use of this
parameterization for a circle related to a set of data points lying on or
near an arc whose length is much smaller than its radius."

3.2 Best Fitting Geometric Element Computation

General Approach:



The general approach for developing substitute geometry for circles based on Least-
squares (LS), Minimum Zone (MZ), Maximum Inscribed (MI) and Minimum Circumscribed
(MC) criteria is discussed in this section. The two main requirements for solving the best fitting
problem for any geometric element are proper parameterization and criteria for best fit. The
parameterization has been addressed in the previous section, and the criteria is addressed in this
section.

Consider a circle, C, with center (X,.y,) and radius r. Any point on the circle, P, (x,,y)),
satisfies the equation

(X;-%x,) 2+ (y;~y,)%=1" (3)

Then the residual distance, d;, (i.e., the radial distance of P; from C) is

di=\/(xi—xo)2+(yi—yo)2—r (4)

Hence, the problem is
n 1
min{%zldilp] p}

i=1

(5)
- minz |d;|”
1i=1

where n is the number of data points. This is called the L., norm estimation problem. The cases
P = 2 and p = o are of special interest in substitute geometry. Whenp = 2,

= (6)
= minz d?
=
mini( J(Xi—x0)2+(yi—yo)2—r)2 (7)
1i=1

This is called the least-squares problem. When p = oo, the equation reduces to the L
estimation problem to minimize the maximum of the absolute values of d,

_ min max
Lo = {Xq:1 Y54 I) 1sisn|di| (8)

This is called the mini-max or the minimum zone or the Chebyshev problem [14, 15, 16, 17,
18].

The minimum circumscribed circle problem is to find the center, (x,, y,) and the radius,
r, of the circle which minimizes r subject to



J(x~x) 2+ (y;-y,) iz for i=1,2,

(9)
max
=1 Gen V(X)) 2+ {(yimy,) 2
This problem can be written as the L, norm estimation problem,
min max — — .
(XOI_VO) l<izn (Xi XO) * (yi .Vo) (10)
H{x), ¥,) = 1o g (X=X T4y 7 55) 2 (11)

The Anderson-Osborne-Watson algorithm is used to solve this problem.
The maximum inscribed circle problem is to find the center and the radius, r, to

maximize r subject to the constraints

VIxi-x) 2+ (y;-y) 221 for i=1,2,
(12)
min
=1 cien ¥ (X X)*H (¥;-yy) ®
This equation can be written as the 1., norm estimation problem,
max min — —
(Xg,¥y) 1<izn (x;=%)*+ {(¥:=¥,) (13)
This can be written as the minimization problem by subtracting it from a constant, C
- _ min  max (_ —— ——
(XO,YO) 15151]( “(xl XO) +(y_1 .VU) ) (14)
min  max m———k
=~ O (x,,y,) 15ienlC " VER) Ty (15)

Numerous algorithms have been proposed for solving least-squares and mini-max
problems. We used the Gauss-Newton method [10] for solving the least-squares best fit
problem. The Anderson-Osborne-Watson algorithm [11] was used for solving the mini-max,
maximum inscribed and minimum circumscribed circle problem. These methods use first
derivative information about the d;’s to determine the search direction. Figure 5. shows results
from the four algorithms (LSC, MZC, MCC, MIC) for a three lobed part with 2.5 microns
noise.

4.0 Computer Simulation of Measurements

In order to develop the best measurement strategy, numerous experiments had to be
conducted to study the influence of different parameters on the measurement strategy. The core
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of our effort was directed around computer simulation of actual measurement practice, using
geometries with different form errors, sampled with different sampling techniques, sampling
densities, and random measurement errors. The procedure is shown schematically in Figure. 6.
It begins by generating a perfect feature. Next, form error may be added to this feature. In the
case of circles, lobes around the circumference have been added with variable lobe amplitude.
Once the form error was added, the geometry was sampled using one of three techniques. The
first technique was uniform sampling, the second technique stratified sampling, and the final
technique random sampling. After several initial experiments, the random sampling was
abandoned since it is difficult to do on a CMM and also yields unpredictable results. For
different sampling strategies, different number of points were used. For a specific sample and
a specific number of points, random noise was added to the coordinates to represent
measurement uncertainty, and then the coordinates were fit using one of many algorithms. The
results from the algorithm were compared to the "true” value and differences between the results
and the "true"value displayed. For the purpose of these experiments, the "true" value was
considered to be the value obtained using the selected algorithm on the selected geometry, with
very high sampling density (360 points in our case).

For circles, in order to replicate insofar as possible actual measurement procedure, for a given
geometry (including form error), random noise level, sampling strategy, and number of points,
approximately 50 experiments were conducted. Each experiment differed, in the case of uniform
sampling, by a selection of a random angle commencing the measurement around a
circumference. In the case of stratified sampling, the difference was further randomizing in that,
within each segment of the circle, a random location was chosen.

The results of the simulation was displayed in a series of graphs, like that shown in Figure 7.,
for a circle with three lobes, amplitude 10um measured on a machine with a random error three
standard deviations, of 2.5 um, fit using the least squares algorithm and sampling using uniform
sampling method. The vertical bars show the range of the values. The distributions of results
were examined for several cases and found to be distinctly non-normal; the range therefore is
the most meaning full parameter. The results from these experiments were used to develop
sampling strategies for circles and to draw general conclusions. The results from uniform
sampling were better than the results from stratified sampling. Results from one set of
experiments using uniform sampling is analyzed in detail in the following section.

The results from least squares algorithm for a three lobed part with and without noise is given
in Figure 7. The graphs clearly reveal a structure and the structure is preserved in the presence
of noise. In order to get the correct radius at least 4 points must be sampled on a three lobed
part. However, if the center of circle is also important then the number of points must be at least
5. In order to get the (R, - R,;,) close to the correct value the number of points must be a
prime number (7, 11, 13, 17, or 19). If form error is present, selecting a prime number ensures
the inclusion of extreme points irrespective of the starting angle. The higher the prime number,
the smaller is the range of (R,,, - R,.) value. The general conclusion that can be drawn based
on the experiments for lobes 3 to 9 without noise is that the number of points must be at least
n+1 where n is the number lobes to get the correct radius. The number of points must be at
least n+2, where n is the number of lobes, to get the correct center. The correct out of
roundness values got closer when the number of points is a prime number and the results
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approached the correct values for larger number of points. All these requirement can be met if
the number of points is a prime number that is greater than 2n. The factor two satisfies the
Nyquist criteria and the prime number ensures the inclusion of extreme points. The actual choice
of a prime number larger than the minimum is dictated by the precision of the machine, the lobe
amplitude and the tolerance of the part. Figure 7b., shows the results from the experiment in
which noise is included. The noise could be from the coordinate measuring machine or the part.
The main conclusion from these results is that the structure seen in the results is the same as the
one observed in the experiment without the noise. The noise introduces uncertainty in the results.
Increased noise results in larger uncertainty. The sampling strategy for parts with systematic
errors such as lobing is determined mainly based on the number of lobes. The noise levels were
increased up to 6 times the lobe amplitude and the general conclusion drawn were still valid.
This indicates that if form error is present the sampling strategy is mainly dictated by the form
error even if excessive noise is present.

The results from minimum zone algorithm is shown in Figure 8. As in the case of least
squares the results show a structure when form error is present and the presence of noise
increases the uncertainty in the results. The correct results were obtained for radius and center
when the number of points were 2n, where n is the number of lobes. The radius and the center
positions have a large uncertainty when prime numbers are selected. The (R, - R, ) values
obtained using 2n points results in large uncertainty and this is due to the effect of starting angle
while sampling the points on a circle. In general minimum zone algorithm is used for evaluating
the form error, hence the number of points that give correct (R,,, - R,,.) is the ideal one. This
indicates that the number of points must be a prime number to ensure the inclusion of the
extreme points irrespective of the starting angle. If a prime number is selected then it must be
greater than 4n to reduce the uncertainty in the radius and center values. Thus in the case of
minimum zone the recommendation is to choose a prime number that is greater than 4n, where
n is the number of lobes.

The results from minimum circumscribed algorithm and maximum inscribed algorithm
are shown in Figures 9 & 10. In order to get correct results from these algorithms the sampled
data must contain the extreme points and the starting point for the sampling must not influence
the results. Selecting prime numbers satisfies this criteria. When the prime number is greater
than 4n the radius and center position have a smaller uncertainty. Figure 11 shows the effect of
starting angle when prime numbers are selected. The recommendation for maximum inscribed
and minimum circumscribed algorithms is to choose a prime number that is greater than 4n,
where n is the number of lobes.

The computer experiments clearly revealed that when form error is present there are
some preferred number of points. Irrespective of the algorithm used, if the number points
selected is a prime number and is greater than 4n (2n for least squares), where n is the number
of lobes, the correct results will be obtained. The presence of noise increases the uncertainty and
the uncertainty value increases for increased value of noise.

5.0 Validation of Computer Simulation



An extensive amount of experimentation had to be done with parts having different
Characteristic errors and under different conditions of the influential parameters. Hence,
computer simulation of the measurement system was essential for our problem. This gave the
flexibility of isolating the errors in the part to study them thoroughly. In order to check the
simulated experiments, a large number of parts were measured on our CMM and the results
compared to those obtained from the computer experiments. All together, 20 features on 16
different parts were measured with the CMM. These parts were made from common materials,
such as aluminum, steel and brass, and were believed to be good representation of the possible
form errors for manufacturing processes. Although all of the parts probably had form error, it
was found that cylindrically-ground, centerless ground, honed and some turned or bored parts
had errors that were as small as, or smaller than, the machine probing errors on our machine
and therefore could not be detected. On those parts where form error could be detected, namely
drilled, turned, bored, circularly-contoured, and some reamed parts, the most prominent lobes
were two, three, four and six.

In addition to this qualitative comparison, quantitative comparison between the CMM
results and the simulated parts was done. One of the best examples was that of a three-lobed
part, where the measurements almost precisely matched our simulated results. In Figure 11. the
graphical results for location, diameter and form error of the simulated part and the real part are
compared. As can be seen, the behavior of the computer simulation is quantitatively and
qualitatively nearly identical to that of the actual measurement which validates the computer
simulation procedure.

6.0 Conclusion:

The computer simulation and validation of sampling strategies for circles showed rather
conclusively, that most stable results were obtained using equi-angular distribution of points with
the number of points being considerably more than the number of lobes. The main conclusion
is that form error (lobing), if present dictates the sampling strategy. When the number of points
is a prime number greater than 4n (2n in the case of least squares), where n is the number of
lobes, correct results are obtained. The effect of random error whether from the part or the
measuring machine were also quite predictable using computer simulation. Random error simply
added uncertainty in the particular fit parameter, proportional to the size of the random error
added to the form error.
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Algorithm : Least Squares
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Sampling Scheme : Equi-Distant
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Algorithm : Least Squares

Radius : 49.811mm
No. of Lobes : 3
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