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The methods and results are presented for applying software error compensation to a commercial three axis coordinate
measuring machine. The technique incorporates compensation for geometric positioning errors and some thermal effects.
Geometric error computation is based on a rigid body model of workplece motion in the machine coordinate frame. Com-

plete kinematic equations of the error motions are presented.

The measurement method only requires taking a small set

of data for each axis to compute the errors throughout the full workzone. To achieve the desired accuracy, squareness
is determined using linear displacement measurements along selected machine diagenals. The dominant thermal effects
in the machine are removed by introducing the concept of an "effective" nominal differential expansion coefficient.
The entire error compensation computation is incorporated into the machine position reading subroutine to automatically
produce compensated readings. The effectiveness of this method is tested by measuring linear displacement along arbi-
trarily oriented lines through the workzone and by messuring the length of a 500 mm gage block in several orientations.
The results show a factor of ten performance improvement (limited by measurement repeatability) over 0.5 C range in

temperature.

INTRODUCTION

¥We at the Hational Bureau of Standards have, for some years, been
involved with error compensation of coordinate measuring machines
and machine tools (Ref. 1). Recently we completed the error
compensation of a typioal industrial three-coordinate measuring
machine, obtaining approximately a factor of 10 improvement in
machine accuracy. The machine was of the moving bridge
configuration, as shown in Fig. 1. The bridge moves in the Y
direction along an air bearing guideway on the table. A carriage,
moveable in the X direction, is mounted on the bridge. The ram is
mounted on the X carriage and moves in the I direction. Probes
are mounted on the end of the ram.

‘THE MACHINE MODEL

Our model of the machine ia designed to oompensate for the
systematic geometric errors in the machine, and for firat-order
thermal expansions of the machine scales. The geometric errors
are premeasured and astored for on-line correction, while the
temperaturs of ths machine scales is measursd during operation.

Because we desired to keep the machine model as simple as
possible, we used the rigid-body assumption to compute the machine
geometry. This assumption 4is, of course, only an approximation
which has oaussd us and other workers some difficulty in the past
(Ref. 1 and 2). We therefore checked the largest contributor to
non-rigid-body behavior (position-dependent bending of the machine
table) before acquiring any other geometric data. In order to do
this, the flatness of the table was measured for nine different
positions of the bridge and X carriage (movement of the ram is not
included since it is counterweighted). The chosen positions are
shown in Fig. 2, and the worst oamse difference in flatness between
two positions of ram and bridge is shown in Fig. 3. Except for
positions very close to two corners of the table, the change in
table flatness due to changing load distribution is less than 1
micrometer, which led us to believe that for this measuring
machine a rigid-body model would be acceptable.
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FIGURE 1. DIAGRAM OF THE COORDINATE MEASURING MACHINE

The model 'we used required four independent coordinate systems, as
shown in Fig. 1. They are the table system (0,X,Y,Z), the bridge
system (0;,X;,Y;,Z;), the X carriage system (02,X2,Y2,22), and the
ram system (0,,X,,Yy,2y). For conceptual purposes, the bridge
system and the X carriage system are shown in Fig. 1 as being
attached to the bridge and X carriage, respectively, through
small, non-sxistent connecting rods. We assume that at the
beginning of motion all four origins coincide and the axes of all
four systems are aligned. We alsc choose the T axis as the

starting line for squareness ocompensation (i.e., X is assumed out-
of-square Wwith Y) and the IXI-Y plane as the reference for I
squareness. The notation is similar to that introduced by Tlusty
(Ref. 3) and expanded upon 4in Ref. 4. In this notation the
subscript denotes the error direction and the argument the motion
direction.

Thus, when the bridge moves a nominal distance Y, the aotual

position of the bridge origin 0,y in the table system, is given by
the veotor
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where the { are used here to denote type F straightness (Ref. 4).
At the same time, the whole bridge ooordinate system rotates with
respect to the table system due to the angular error motions.
This rotation can be expressed by the infinitesimal rotation
matrix

1 €, (Y) -—t,('f)
Ry = [ -g,(7) 1 £, (Y) (2)
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Similarly, when the X carriage moves a nominal distance X, and the
ram moves a nominal distance Z, we have the two additional vectors

X - 8,
0,03 = [ -x-a 4+ 6 -
8,(x)
=28y + 6,(2)
0,0, = | -z+8, + by(2) ol

z - 6,(2)

where we have explicitly included the X-Y out-of-squareness as the
angle a and the Z o\t-of-sjuareness to the X-T plane as the two
angles B, and B;. e infipitesimal rotation matrices for these
motions (R,R,) can be readily generated from Eq. 2 by simply
replacing the argumensY with X or Z, respectively.

Given the above definitions, the coordinates in the table system
(X*',Y',2') of an arbitrary point P, which has coordinates
(XP.! s»2p) in the ram system, can be determined from the following
equation:

OF = B0, + Ry7N(R,THRyTIGSF + 0,0,) + 55, W

where the superscript -1 indicates the inverse matrix. Writing
out Eq. N by ccordinates yields the equations necessary for the
geometric portion of the error compensation which are



AX = =8 (X) + 8,.(T) + 8,(2) - 2B, + Zoey(X) + 2c (1)
= Yp(e (X) + €, (Y) + ,(2)) + Z,(e (X + £y (M) + :,m) (5a)

ay - -a,m + 6,(X) + 6,(2) = Xoa = 2B, + Xee (1) = Zec (1)
+ X (e (X) #+ £, (T) + €,(2)) - Z,(e (X) + € (Y) + LE DT
= 2re,(0)

AZ = =5 (2) + 8,(X) + 6, (V) - x-c,m - 1‘,(:,(!} + :,m +£,(2))
(e () + £ (1) + €, (2)) (50)

where X, T and I as argusents refer to the nominal machine
reading,; AX = X =X'= P’ and similarly for the other coordinates.
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FIGURE 2. POSITIONS CHOSEN FOR POSITION-DEPENDENT

TABLE BENDING MEASUREMENTS

In order to complete the model, we then added a correction for
temperature. Since our machine was in a metrology laboratory
temperature controlled to +1 Celsius, simple compensation for
scale changes was felt to be sufficient. Two thermistors were
symmetrically mounted on each of the machine scales (which were
glass line scales). The thermal error for each scale was assumed
to be of the form

Axp = o+ X ((1, 4 1,)/2) - 20) (6
and similarly for YT and Z. Bere is the effective thermal
sxpansion ocefficient with that o inate, T; and T; are the

temperatures of the two thermistors, and 20, of course, is the
standard metrological temperature in Celsius. (It should be noted
that other more complicated models were tried, but the improvement
in results was not sufficient to justify greater complexity.)
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PIGURE 3. MAXIMUM DIFFERENCES IN TABLE FLATNESS (MICROMETERS)

The effective coefficient of expansion was found to be needed,
however, as there were significant differences bstween the three
Boales as well as differences from the nominal expansion values
for the wscales. For this machine ws obtained effective
coefficients of 16, 10 and 13 parts per million per Celsius for
the X, T and Z poales, respectively. This was thought to be

oaused by the combination of the slumipum cases used to constrain
the soamles and internal stresses in the scales caused by acrews
which were used by the manufacturer to compress the scales an+
adjust their effective length.

The effective coefficient of expansion was obtained by measuring
the scale error for each scale, at different temperatures, and
obtaining the slope of the resulting lines. A typical curve for
the X scale is shown in Fig. A.
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FIGURE §. THERMAL BEHAVIOR OF THE MACHINE X SCALE

MACHINE GEOMETRIC CALIBRATION

In order to prepars the srror tablas for thes ocorrection of the
geometric error of this measuring machine, all 21 error terms
given in the previous section had to be measured. Scale errors,
straightness errors, and the three angular errors per axis had to
be measured along the whole travel of the given axis at regular
intervals. Since these errors usually change gradually, we
measured them every 50 millimeters for the X and Y axes, and every
20 millimeters for the Z axis. (The total measurement volume of
the machine was 700 x 900 x 460 millimeters.) For all of these
motions, all error terms except for angular rotation about the
motion axis (oftenm called "roll") wers measured using a Hewlett-
Packard laser interferometer compensated for environmental
conditions (Ref. 5). Because of physical limitations on the
optics, the plane 2:80 millimeters was chosen for making the X and
T peasurements. Because of similar limitations for Z less than
80, the Z scale error had to be measured using gage blocks, and
the pitch and yaw (ex(2),€y(Z)) of this axis over this range
measured using differential levels. The roll measurements for the
X and Y axes (t,(!).:,(‘l)) were performed using the same
differential levels, while the Z roll was measured using a surface
plate on its side and two offset electronic indicators, as shown
in Fig. 5.
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The above measurements yielded data on 18 of the required error
terms; however, it was still necessary to measure the axis
squareness of the machine, which is extremely important in
determining the final mccuracy. A common method, which uses an
optical square (Ref. 6), was not used due to errors inherent in
this approach (Ref. 7). Instead, we determined the squareness
using & method common in surveying, that of measuring along
machine diagonals. This proved to be an extremely sensitive and
accurate method for squareness determination. For example,



examine the setup for measuring X-Y squareness, which 1is shown in
Fig. 6. Here the corner oubs of the interfercmeter moves along
the X-Y diagonal from X=0, Ya0 to X«TO0 mm, Y=$00 mm. The
distance traveled is given by

dy = X,y sin 8 + Ygy €08 O (7

where X,q and Yy are the actual coordinates in the table frame of
the end of the ram at the ith measured point. The error in
displacement along the diagonal caused by X-Y squareness is

Bdy = dg - X4 #in 8 - ¥ 4 cos 8 (8)

where X.q and Y.y are the ccordinates of the ith measured point
after ocompensation for scale, straightness and angular errors,
but before taking into account the out-of-squareness of the X-¥
axes. The oompensated ocordinates are related to the aotual
coordinates by

Tog = Xyg + &%, (9a)

Yoy =Y+ AY, (9b6)

where AXy and AY; are the residual errors after compensation for
all but squareness. Thus the diagonal error (Eq. B) is given by

Ady = -4, win @ - &Y, cos 8 - Y ; o sin B (o)

Fig. 7 is a graph of the disgonal error as a function of Y, as
measured on this machine. The slope of the least-squares fit line
to this curve is the out-of-squareness times the sine of theta.
If the residual errors in X and Y and the uncertainty in the
measurement of the error in the diagonal are totally random, then
the uncertainty in the out-of-squareness measured by this
technique would be less than 0.1 arc-second for this measurement.
If, however, there were systematics left after the partial error
compensation, then this error can be considerably larger. We
therefore attempted to eliminate this asystematic error by
measuring a second diagonal nearly simultaneously, as shown in the
figure. The slope of the resulting curve is opposite to that of
the precesding diagonal, and the aversge from these data mets
gives the squareness error. This ocedure, which is somewhat
analogous to straightedge reversal, leads to the oancellation of
many forms of systematio error. Detalls of the diagonal method

for these types of measurements will be discussed slsswhere (Ref.
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FIGURE 6. SETUP FOR DIAGONAL MEASUREMENTS
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FIGURE 7. X-Y DIAGONAL ERROR AS A FUNCTION OF Y

SOFTWARE FOR ERROR COMPENSATION

The software to perform the compensation was amdded as a single
subroutine in the ocontrol computer for the measuring machine,
which was a small minicomputer. About 3 kbytes of BOROT'Y Were
required for this subroutine. The subroutine required the
operator to input the X, Y and Z offsets of the probe used, to
input the reference ocoordinates for the zero point of the
measurement system (this would not be required on m machine which
had absolute encoders), and the scale and workpliece temperatures.
During operation the subroutine then read the nominal machine
ooordinates, performed a linear interpolation to calculate the
expected value for the 18 position-dependent error terms, and
calculated the compensated coordinates using Egs. 5 and 6. This
routine also can readily be used to create error maps of the
machine as built. Fig. 8 shows such an error map for the plane
2230 at 20 Celsius. The maximum error in this plane occurs for
measurements from point (100,900,30) te point (700,0,30) and has a
value of 29.% micrometers. When the temperature is decreased to
19 Celsius, the error between these two points increases
approximately 10 micrometers. The largest error measured was 43
micrometers, at the lowest temperature that the lab reached.
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RESULTS

The efficacy of the error compensation was tested in two ways:
first by performing linear positioning tests on more than 50 lines
along different directions within the work zone; and second by



measuring a calibrated gage block.

The results of some of the linear measurements are given in Figs.
9, 10 and 11. Fig. 9 shows the resulta on an X=T diagonal of the
machine. The total uncompensated error was 31.1 micrometer, and
after compensation the error was 2.5 micrometers. For analysis
purposes, we divided the error into linear components, that is,
the portion of the srror that can be mocounted for by a best-rit
straight 1line, and non-linear components, which are the residuals
obtained after subtracting the best-fit straight line from the
error. An examination of the data in Fig. 9 shows that the
maximum non-linear portion was only -0.76 micrometer, while the
linear portion of the reaidual after oorrection was considerably
larger. This linear ocomponent could be caused by error in the
temperature measurement, in the determination of the effective
coefficient of expansion, in the squareness measurement, or
perhaps a change in squareness in the time batwesn calibration and
testing.
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FIGURE 9. ERROR MEASUREMENTS ON AN X-Y DIAGONAL

In Fig. 10 another result is shown for an X-1-Z diagonal. The
total error before compensation is 42 micrometers and after it is
<1.3 micrometers. Our worst-case result is shown in Fig. 11 for
another I-T-Z diagonal. Here the maximum srror is 4.7 micrometers
before compensation and -N micrometers after compensation. In
sumsary, however, we found that among all measured lines more than
20 percent had total error greater than 20 micromsters before
compensation, but after sompensation less than 20 perosnt of the
lines had a maximum error larger than 2 micromsters. Thus, on the
whole, we obtained an improvement in machine acouracy by more than
8 factor of ten, with the maximum error over the full work zone
being reduced from more than M0 micrometers to less than &
micrometers.
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FIGURE 10. ERROR MEASURED ON AN X-Y-Z DIAGONAL

The error compensation was also tested by measuring a 20.3-inch
(515 millimeters) gage block in a variety of positions. The block
was mounted on a sine bar 8o that it oould be oriented at
different angles, and the machine touch=fire probe was replaced by
an LVDT. Two thermocouples were mounted on the gage block to
measure the workplece temperature. The results of these
Beasurements are shown in the following table. The maximum error
obtained before compensation was 7.5 micrometers and after
compensation was 1.4 micrometers. All measurements were performed
at 20 + 0.5 Celsius, which, because of the large thermal
corrections required on this machine, reduces the error before
compsnsation.

Summary of 20,3-1in. Gage Bloock Measurements

Uncompensated Compensated
Position Error Error
(micrometers) (micrometers)
1 -a, -1.2
2 -2.9 0.5
3 =3.0 0.3
L} L} =0.1
5 5 1.4
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FIGURE 11. ERROR MEASURED ON AN X-Y-Z DIAGONAL
CONCLUSIONS

The results above lead us to conclude that error compensation 1s a
powerful and economical way to upgrade the acouracy of coordinate
measuring machines. It is clearly possible to obtain a factor of
10 or more improvement if oompensation is done conscientiously.
Obtaining such improvement requires a correct geometric model, a
correct thermal model, and careful machine oalibration. MWe found
particular attention had to be paid to squareness and angle
errors, a4s well as to the machine scales and thermal behavior. It
also seems possible that error compensation tachniques oould yield
even more benefits if they were considered at the design stage of
& measuring machine, as has been done for special purpose machine
tools (Ref. 9). If this were done, then the main design criteria
for a machine would bs repeatability and stability, and other
requirements, such as precise ali and ad sms ,
oould be relaxed.
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