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Applications of linear programming to 
engineering metrology 

D G Chetwynd, BA, PhD 
Centre for Micro-engineering and Metrology, Department of Engineering, University of Warwick, Coventry 

Computer-based metrology now makes use of exchange algorithms for computing best-fit geometries in which the solution is obtained by 
a series of iterations each involving the exchange of one previously unused data point for one of the dominant points of the previous 
iteration according to formal rules. While conferring large advantages in spec$c circumstances, their major signijicance is that of being 
examples of a class of optimization of much wider applicability. 
This paper examines the theoretical basis of these algorithms in linear programming and develops a general approach to the solution of 
this class from which new applications can be derived. T o  maintain an engineering context in the analysis, practical examples are used, 
mainly jkom the field of roundness measurement. 

Si 

NOTATION 

geometrical parameters of linear refer- 
ence figures 
half zone width between parallel lines 
radius of circle 
radial ordinates from instrument 
centre 
takes value f l  to show type of 
contact of ith point 
profile ordinate in Cartesian frame 
scalar function to be optimized 
determinant using ith and j th  ordi- 
nates 

Also, used in discussing the general nature of linear 
programs, Sections 3 and 4: 

A, K 
b, c 
X column matrix of parameters 
B 

rectangular matrices of coefficients 
column matrices of coefficients 

square matrix, inverse of the basis 

1 INTRODUCTION 

The ready availability of digital computation has influ- 
enced all branches of engineering metrology. Arguably, 
the greatest impact has occurred in the measurement of 
the shapes of workpieces in order to determine how well 
they comply with the ideal geometries specified in the 
design drawings. This involves the fitting of geometri- 
cally defined shapes, called reference figures, to sets of 
measured data. Traditionally, this was done by hand. 
Reference figures were fitted to magnified graphs of the 
surface profile by trial and error. National standards 
reflect this by incorporating intuitively sensible and 
useful criteria of fit such as enclosing the measurements 
within the smallest circumscribing circle or between two 
parallel figures of minimum separation. In producing 
automatic instruments, the intuitive skill of the human 
must be replaced by a mathematically rigorous algo- 
rithm which follows the requirements of the Standards 
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while operating at a speed acceptable for industrial use. 
It is preferable, again for reasons of standardization, 
that the algorithms be readily expressible in geometric 
terms so as to be usable, and intelligible, by practising 
metrologists perhaps unfamiliar with powerful, modern 
methods of mathematics. 

These requirements have been admirably met by a 
series of geometrical exchange algorithms (1). The refer- 
ence figure to a set of data points is found by first fitting 
a trial figure to a subset of the data and then performing 
a series of iterations at each of which exactly one 
datum point which violates the criteria of fit is 
exchanged with one of the defining set to create a new 
trial solution. The power of the method lies in the rules 
governing permissible exchanges which ensure an 
orderly convergence on to the true solution. Unfor- 
tunately, the exchange rules are usually highly problem- 
specific. The concepts have a wide range of applicability 
but it cannot be assumed that the rules will work in 
other situations. Such generalizations must be built 
upon a mathematically rigorous foundation. The 
concern of this paper is to develop the theory, and an 
approach to derivation, which underlies all the metro- 
logical exchange algorithms. In order to give a physical 
context, specific examples are used for this purpose. 
Roundness analysis, and a little on flatness, is used since 
it is easily visualized, an important class of measure- 
ment in its own right and highlights all the points rele- 
vant to industrial metrology. The nature of the 
instrumentation and the profile distortions caused by it, 
which are of considerable metrological importance and 
which influence the choice of reference model (1, 2), will 
not be discussed. Here it is assumed that, by some 
means, a set of data points has been obtained which 
represents either spot-heights of a real, nominally flat 
surface relative to an ideal plane placed approximately 
parallel to it or distances to points on the surface of a 
nominally circular cross-section measured radially from 
a point close to the true centre of that section. 

It will become apparent that all the reference figures 
have certain features in common. A degree of impreci- 
sion in their definitions must be clarified in a manner 
sympathetic to Standards. Then, all may be expressed 
mathematically as constrained optimizations. Each 
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involves minimizing or maximizing an objective func- 
tion while keeping other functional relationships within 
predefined bounds. If all these relationships can be 
expressed as linear functions of a set of parameters, the 
optimization becomes a linear program. The theory of 
linear programming is fundamental to a generalized 
understanding of the exchange algorithms. 

2 THE NATURE OF REFERENCE FITTING 

One common approach to fitting a reference figure to a 
set of data is to use least-squares estimation (usually 
with some degree of approximation), but here attention 
will focus on other methods much used by hand and 
less obviously computed. 

The straightness of profile is measured relative to a 
pair of parallel straight lines so placed that the profile is 
contained between them and their separation, measured 
in a direction perpendicular to the general trend of the 
profile, is minimized. The idea embodied in Standards, 
that the general trend, or orientation, of the surface can 
be identified prior to measurement is a source of practi- 
cal difficulties. Here, it is taken to imply that there is a 
known Cartesian frame, conveniently called the instru- 
ment coordinate frame, relative to which mathematical 
formulations which are not rotationally invariant may 
be expressed without significant error. This is a reason- 
able expectation with data from surface metrology 
instruments but it should be used only with extreme 
care with, for example, data from a coordinate measur- 
ing machine. The flatness of a plane is similarly mea- 
sured from a pair of minimum separation parallel 
planes. 

Roundness can be measured from any of three refer- 
ence circles : the minimum radius circumscribing circle ; 
the maximum radius inscribing circle ; and the minimum 
radial zone circles. Definitions of the first two are self- 
evident while the third consists of two concentric circles 
of minimum radial difference which contain the profile 
between them. 

Other, more complex, geometrical forms are generally 
constructed from a combination of the above or from 
simple variants of them as in minimum enclosing 
sphere, minimum zone cylinders and so on. 

Once the transition to a sampled data scheme is per- 
formed prior to digital computation, all these references 
may be written in immediately recognizable mathemati- 
cal forms. For example, the straightness reference, 
expressed in instrument coordinates, is : given a 
sequence of Cartesian datum points (x, , y,) 

minimize Z = h 

subject to mxi + c + h 3 y ,  (1) 
mx, + c - h d y ,  

for all (x,, y,) simultaneously. This illustrates a conve- 
nient parametrization, namely a single line (slope m. 
intercept c) together with a zone of acceptability of 
width 2h set symmetrically about it. Equation (1)  is a 
linear program in (m,  c, h). [It is also a simple form of 
the minimax polynomial fit for which the so called 
Stiefel exchange algorithm offers an efficient solution. 
This may be derived from, and owes its efficiency to the 
properties of, the associated linear program (3).] 

Standards present a method, originally for calculating 
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Fig. 1 Definitions for the eccentric circle 

the least squares parameters, which has been extensively 
studied (4, 5, 6) and is known as the ‘limacon approx- 
imation’ for roundness measurement. Referring to the 
notation of Fig. 1, the eccentric circle is reduced, pro- 
viding e < R :  

p = e cos(8 - 4) + [Rz - eZ sin2(8 - (p)]112 

= P  COS(Q - 6) + R (2) 

(3 )  

or 

p N a cos 8 + b sin 8 + R 

This is a linearization of the parameters about thc 
origin. Lineariiation about any other point involves 
considerable extra complexity of the coefficients. In 
practice, because roundness measuring instruments 
usually introduce a slight geometrical distortion into 
the data, fitting a limacon, equation (3). nearly always 
gives a more accurate measurement than would fitting a 
true circle (6). Whenever the limacon approximation is 
valid, the calculation of limiting reference circles 
becomes a linear program. For example, the minimum 
circumscribing figure to a set of data points ( r t ,  8,) is 
expressible as : 

minimise Z = R 

subject to a cos 8, + b sin 8, + R r ,  (4) 
for all i. Others may be expressed in the form either of 
equation (1) or equation (4). 

Before proceeding to develop algorithms from these 
formulations, it is useful to establish a practical context 
and a mathematical notation by first illustrating earlier 
work on reference circles and then, in Section 3, 
reviewing, extremely briefly, the main points of linear 
programming theory. 

Essentially the same geometrical procedure for 
finding, for example, the minimum circumscribing circle 
has been proposed independently on at least two 
occasions (7, 8) (Fig. 2): 

Find the profile point furthest from the origin: a 
central circle passing through this is circumscribing 
but not minimum. 
Move the circle centre towards the point, reducing its 
radius in order to maintain contact with the point, 
until a second contact is found. 
Move the centre along the bisector of the angle 
between these contacts, holding onto both by 
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Fig. 2 A search procedure for the minimum circumscribing circle (7,8) 

reducing the radius, until a third point of contact is 
found. 

As a circle has three independent parameters, three 
contacts are sufficient to define it and a solution is 
found. A computer program would use limacons rather 
than circles but follow the logic. Since a search along 
the whole locus of the centre is needed, there are many 
iterations, slow execution and, in practice, some diffi- 
culties over the determination of end-conditions. Never- 
theless, the method has been used commercially with 
some success. 

3 BASIC CONCEPTS IN LINEAR PROGRAMMING 

A linear program is an optimization in which the objec- 
tive function and all the constraints are linear in the 
parameters. Using vector notation, it can be expressed 
as : 

maximize Z = cTx 

subject to A - x < b 
where, for m positive parameters, x, and n constraints, c 
is an m-vector, b an n-vector and A an m x n mairix. 

It is known (there is extensive literature on this 
subject) that the optimum solution occurs when each of 
the constraints which is actively limiting that optimum 
is satisfied to its limit by one of the parameters. Hence 
only certain combinations of parameter values need be 
examined. An orderly search through these is obtained 
by using the simplex method in which iterations involve 
only elementary row operations on the matrix-vector 
representation. Simplex organizes these vectors as a 
partitioned matrix (a tableau): 

[.- K -[ : b  z] 

where K is A augmented by an n x n identity matrix 
and c is correspondingly extended by n zero-elements. 
This appends n ‘slack variables’ to the original par- 
ameters. If the ith parameter is limiting a particular 
constraint, the column K i ,  in K, will have value + 1 in 
the row corresponding to that constraint and zero in all 
other elements. The set of defining parameters so identi- 
fied form the ‘basis’. Initially the basis is the n slack 
variables. Iterations attempt to match paramcters to 
constraints in such a way that 2 is rapidly maximized. 
It is usual to maintain always the feasibility of the 
current iteration by ensuring that no constraint is ever 
violated, that is, that no element of b’ becomes negative. 
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The prime indicates the vector which currently occupies 
the position originally occupied by b. At each iteration 
the largest positive element of crT is chosen and its 
column brought actively into the solution (this is the 
stategy of ‘steepest descent’). When no positive elements 
remain in c’~, optimality has been achieved and the 
solution values are readily interpreted from the tableau. 
Equality constraints, which must, of course, be always 
exactly satisfied, do not take slack variables but equiva- 
lent ‘artificial variables’ are used as a device for starting 
the iterative procedure in an orderly manner. By defini- 
tion, artificial variables cannot remain present in any 
feasible solution of the tableau. 

At any iteration, the columns which originally con- 
sisted of the identity matrix carry a complete and inter- 
pretable record of the row transformations carried out 
on the tableau. Likewise, the columns of the current 
basis carry the same information in the inverse of their 
original form. The computationally eficient method of 
revised simplex, does not update the full tableau but 
merely notes what would have been done at each iter- 
ation. Elements are only updated when specifically 
required for calculations, as, for example b = pb where 

is the inverse of the current basis. 
While the total computation required rises with both 

m and n, it is particularly sensitive to n, the number of 
constraints, as the work required relates to that of 
inverting n x n matrices. It may, therefore, be advanta- 
geous to use a dual program. For any m x n linear 
program (termed the primal), an n x m dual may be 
defined as: [ ;- - 

where K is now the augmented form of AT and the 
optimization has changed from minimization to maxi- 
mization or vice versa. It contains exactly the same 
information as the primal, subject to the correct relative 
interpretation of specific elements. 

4 DUAL LINEAR PROGRAMS IN METROLOGY 

Straightness, flatness and all routine roundness mea- 
surements involve reference fitting which appears natu- 
rally as linear programs. For more complex geometries, 
the errors inherent in parameter linearization may be 
judged acceptable when weighed against the computa- 
tional efficiency of simplex. All the resulting formula- 
tions, essentially as equations (1) or (4), have in common 
features indicative that the dual program will offer the 
most efficient solutions. 
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A , . =  
I' 

The sign-definiteness of parameters required for 
simplex cannot be guaranteed with metrological data 
and so each parameter is replaced by an ordered pair 
having equal magnitude but opposite sign. Even so, the 
number of constraints usually dominates the number of 
parameters. Thus a circumscribing limacon fit involves 
six parameters and the minimum zone seven, but typical 
measurements involve several hundred profile points 
each generating a constraint, two in the case of 
minimum zone. The sources of the difficulties encoun- 
tered with early attempts at circle fittings are now 
apparent. They did not exploit the simplex method of 
searching only certain basic solutions and, further, they 
worked with a primal formulation involving, say, six 
parameters and 500 constraints, rather than a dual 
which, while having 500 parameters, has only six con- 
straints. 

In moving from the primal to the dual, the roles of 
vectors b and c are interchanged. If at  any iteration the 
dual is maintained in a feasible condition (all elements 
of c positive), the corresponding primal would be inter- 
preted as being in an optimal, but generally infeasible, 
condition. The implications of dual feasibility are criti- 
cal to what is to follow. Consider a physical interpreta- 
tion for the case of a circumscribing limacon (or circle). 
The primal feasibility condition amounts to starting 
with a figure which is too large but which certainly 
encloses the profile and then shrinking it to the smallest 
radius which still encloses the profile. Dual feasibility 
would entail choosing initially a figure which is the 
smallest to enclose some, but not necessarily all, of the 
data points (in the primal, optimal but infeasible) and 
then expanding it as little as possible so as to include all 
the data. 

The sign-indeterminancy of the primal parameters 
implies that the dual program will consist of equality 
constraints. A general solution may therefore require 
the use of artificial variables in order to obtain an initial 
basic feasible solution. More significantly, for specific 
problems the optimal solution cannot contain any slack 
variables since each constraint must be exactly satisfied. 
If a primal has three parameters, the dual has three 
constraints. The corresponding geometric observation is 
that a circle is defined by exactly three contacts with the 
data. 

Another common feature, of particular significance 
for the development of exchange algorithms, is that the 
primal objective function involves only one parameter, 
minimizing, for example, the radius, R ,  or zone, h. So, by 
correctly choosing the order of parameters, c may be 
written with + 1 in the final element with zero else- 
where. Then at any iteration of the dual, c' is identical 
to the final column of the inverse of the basis, fl, and so 
maintaining dual feasibility requires only that the final 
column of fl has non-negative elements. Given this, any 
iteration will be 'legal', whether or not it be the most 
efficient option. From this point, the strategy is best 
demonstrated by example. 

cos tJi cos oj 
, = sin(Bj - ei) 

sin Bi sin Q j  

5 MINIMUM RADIUS CIRCUMSCRIBING 
LIMACON 

Transferring the primal, geometrical statement of the 
minimum radius circumscribing limacon, equation (4), 
to the dual, and omitting the artificial variables which 
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cannot contribute to the final solution, the initial 
tableau can be written as a minimization: 5: ::: :::; :::  :;:: 1 :  

. . .  ... 

- . . .  - ri ... - r l  

At any iteration giving a feasible solution, the basis 
will be formed from three of these columns. So, taking 
three general contact points at tl,, 0, and e k ,  

1 [ I  1 1 

cos ei cos ej cos ek 
$-'  = sin Oi sin 6, sin Qk 

No significance (such as Bi < Qj, for example) can be 
read into this matrix; the relative positioning of 
columns depends upon the workings of revised simplex 
in previous iterations. The determinant of fl-' is given 
by the sum of the co-factors of its third row, that is by 
the same co-factors which identify the elements of the 
third column of fl. The non-negativity of the elements of 
the third column of thus requires that these co-factors, 
Aij, A,jk,  Aki , must have the same sign where: 

and similarly for the others. Using Cartesian coordi- 
nates, the co-factor can be expressed : 

A . . = - - I  1 x. 1 x j  )I 
'J  y . r .  y. y .  

1 I  

and related to this is a function 

which (apart from an indeterminacy at the origin, of 
little importance here) is a straight line passing through 
( x i ,  y i )  and (0, 0) and dividing the xy plane into the two 
areas where Air > 0 and where Air < 0. The line is also 
the locus of all points having 0: as their argument. 
Noting the order of indices, dual feasibility requires that 
Aij and Aik have opposite sign and so lie on opposite 
sides of the line. An exactly similar argument applies to 
the other points and Ajr = 0 or Akr = 0. If point k is to 
lie on the opposite side of Air = 0 from point j and on 
the opposite side of Ajr = 0 from point i, it can only 
occupy the sector shown in Fig. 3. As it is only in this 
geometry that Ai, and Aj+ will have opposite signs, as 
required for dual feasibility, the following theorem, 
termed here 'the 180" rule', is proved. 

A circumscribing limacon on a given origin to a set of 
points is the minimum radius circumscribing limacon to 
those points if it is in contact with three of them such 
that no two adjacent contact points subtend an angle at 
the origin of more than 180", where the term 'adjacent' 
implies that the angle to be measured is that of the 
sector not including the third contact point. 

A complete simplex iteration for the minimum radius 
circumscribing limacon in the dual consists of selecting 
any point which violates the reference (conventionally, 
the point giving the largest violation is chosen) and sub- 
stituting it for one of the points defining the reference in 
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Here this is the case for, as the exchange is unique at 
each iteration, it must be identical to the variable 
change at the simplex iteration of a linear program, and 
that is known to converge monotonically. 

6 MINIMUM ZONE LIMACONS 

The primal expression of the minimum zone limacon fit 
can be written with all constraints in the same sense as: 

minimize Z = h 

subject to 

-'t 

Fig. 3 Geometry of the dual-feasibility condition for the cir- 
cumscribing limacon 

such a way that dual feasibility is maintained. The 180" 
rule allows the general iteration to be simplified to the 
following exchange algorithm : 

1. Choose any three data points such that no two 
adjacent ones subtend an angle at the origin of more 
than 180". 

2. Construct a reference limacon through these three 
points. 

3. If no data points lie outside this limacon the solution 
is found. Otherwise choose the point which violates 
the reference by the largest amount. 

4. Replace one of the reference points by this new point 
such that the 180" rule is still obeyed and go back 

The exchange between any new point and the con- 
tacts is always unique, as illustrated in Fig. 4. 

An exchange algorithm depends upon the iterations 
moving monotonically towards an optimum solution in 
order to guarantee that cyclical exchanges do not occur. 

to  2). 

Fig. 4 Feasible point exchange for the circumscribing 
limacon: only D replacing C continues to satisfy the 
180" rule. (Note, diagram is exaggerated) 
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cos Qi sin Qi 

-cos Qi -sin Qi 

for all i simultaneously. 
The constraints consist of two equal subsets compris- 

ing those relating to 'inner' (on - r J  or 'outer' (on + ri) 
contacts of the zone. The zone width must be a positive 
quantity and so the primal has a sign restricted variable, 
h. The dual thus has three equality constraints and one 
inequality and its feasible basis must consist of either 
four columns from the original constraints or three such 
columns and the single slack variable. This latter corre- 
sponds to a zero width zone being fitted to three points. 
It has no relevance to the problem at hand and will be 
ignored henceforth. 

The basis can be any four columns chosen freely from 
inner or outer contact sets provided only that the same 
point cannot be used simultaneously from both sets 
(this is physically impossible for a non-zero zone width). 

1 so: I 1 1 1 1 

si cos di sj cos 8j sk cos 0, s1 cos 8, 

B - ~  = Si sin 8, S j  sin Q j  S ,  sin 0, S, sin 0, 
Si Sj  sk S,  

where the variables Si to S ,  take only values + 1 or - 1 
and indicate whether the contact is with the outer or 
inner line respectively. 

The co-factors of the final row of fl-', which must 
have the same sign for dual feasibility, will be: 

-sjsks, Ajkl; sisks, -sisjs, Aij1; sisjsk Aijk 
where the notation is defined in the function: 

1 [ l  1 1 

cos Qi cos Q j  cos Q 
Aijr = sin Qi sin 0, sin 8 = 0 

which is used to test the sign of Aijk and AiP.  It is 
readily shown (Fig. 5), that this function divides the 
measurement plane into two regions within which lie all 
positive or negative values of Aijr. (Note that it is not 
necessarily the reflex sector which holds positive values.) 

Now, if the kth and Ith points are contacts of the 
same type, s k  = S, and Aijk and Aijl must differ in sign if 
all co-factors are to have the same sign. Conversely if 
contacts of different type, sk # S, and Aijk and Aij,.must 
have the same sign. Figure 5 shows that to maintain the 
co-factors with the same sign, points k and 1 must lie 
alternately with points i and j as angle increases if they 
are contacts of the same type. If k and I are contacts of 
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Fig. 5 Geometry of the dual-feasibility condition for the 
minimum zone limacons 

different types they must lie adjacent to each other. This 
situation exists simultaneously for all point pairs. The 
geometrical interpretation is that dual feasibility is 
maintained only if the four points contact alternately 
the inner and outer limit of the zone as angle, from the 
measurement origin, is swept. 

As before, any single point exchange is unique and its 
relationship to simplex guarantees convergence of the 
following exchange algorithm : 

Choose arbitrarily four data points. 
Fit to these a reference limacon such that they are 
radially equidistant from it and lie alternately to 
either side of i t  with increasing angle. 
If no other points are further from the reference the 
solution is found. 
Otherwise substitute the point which lies furthest 
from the reference for one of the four defining points 
such that the new set of points lie alternately to 
either side of the reference and return to  2. 

7 MINIMUM ZONE STRAIGHT LINES 
AND PLANES 

The minimum separation parallel, straight lines belong 
to the well documented class of minimax polynomials, 
that is curves having the smallest possible maximum 
divergence from the data. The condition for this to 
occur is that relative to an nth order polynomial, the 
data must have (n + 2) maxima and minima all of equal 
magnitude. The solution can be found by the Stiefel 
exchange algorithm which proceeds by fitting the poly- 
nomial according to this condition to (n + 2) points and 
then exchanging points further away from it  than those 
points into the defining set while maintaining the condi- 
tion. In terms of the minimum zone straight lines there 
will be three points, two contacting one line and one the 
other in an alternate sequence which are iterated by 
exchanges (Fig. 6). 

The minimum zone planes can be expressed, in 
instrument coordinates : 

minimize 2 = h 

subject to axi + by, + c + h 3 zi 

U X ~  + by,  + c ~ h < zi 
for all data points (xi, y , ,  z i )  
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D 

Fig. 6 Minimum zone straight lines (the Stiefel exchange): 
only D replacing A preserves alternating property. 

a, b and c are sign unrestricted and h 2 0. Noting that 
h = 0 is valid only for the trivial condition that all 
points are co-planar then it may be asserted that four 
points will be represented in the basis of the dual which 
can be expressed (see Section 6 for the reasoning): 

where S i ,  etc. take values + 1 or - 1 according to 
whether ( x i ,  y i ,  zi) contacts the upper or lower of the 
minimum zone planes. As before, dual feasibility is 
guaranteed if all terms in the final column of $ are 
positive, which will be true providing that: 

- sj SI, s, A j k l ;  

Si S k  S, A i k l ;  

~- si sj s1 Aijr 

Si Sj S k  Aijk 

all have the same sign. Consider the determinant equa- 
tion representing the boundary between positive and 
negative regions of Ajkl :  

Ajkr  = Y j  Y k  Y = 1: :" :I 
I t  is a plane parallel to the z-axis (since it is indepen- 

dent of z), passing through points ( x j ,  y j )  and ( x k ,  yk). 

Dual feasibility requires that if Si  = S, (contacts with the 
same plane) Ajki and Ajkf must have different signs and 
vice versa. So if the ith and Ith contacts are with the 
same plane they lie on opposite sides of Ajkr = 0 but if 
they contact different planes they lie both to the same 
side of A,, = 0. A parallel argument shows that the 
same is true for all pairs of points. 

These relationships show the relative positions of 
contacts which give dual feasibility. The two ways of 
satisfying them are shown in the plan views of Fig. 7. 
There can be two contacts with each of the minimum 
zone planes in which case the plan of lines joining the 
alternate types must form a convex quadrilateral or a 
three : one split in which case the single contact must lie 
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Fig. 7 

in the 

Plan view of contact geometries for minimum zone 
planes. 0 and X represent contacts with different 
planes. 

plan of the triangle formed by the other three 
contacts. 

It is readily demonstrated that there is a uniqzc 
exchange for any new point in order that these relation- 
ships be preserved and so a workable exchange algo- 
rithm may be based upon these pattersn. While its use 
by hand is very easy, the number of decisions which are 
involved in making the exchange is quite high and the 
development of a computer program to perform them is 
quite complex. For example, the decision to switch from 
3 : 1 to 2 : 2 arrangements of contacts is intuitively 
obvious but needs quite an effort to explain! Even with 
this most simple of three-dimensional zone fits, the 
advantage of using specific exchange algorithms rather 
than a general revised simplex solution in an automatic 
system is becoming unclear. 

8 ALGORITHM PRACTICALITY 

It may, at first glance, seem surprising than limacon 
fitting rather than the apparently simpler case of flat 
surfaces has been used as the primary example. The 
final observation of Section 7 gives some explanation 
and leads us to question the relative efficiencies of differ- 
ent algorithmic approaches. This paper, being primarily 
concerned with mathematical foundations, will not 
report detailed performance tests but it would be inap- 
propriate to ignore such practicalities. Truly compara- 
tive cross-system benchmarks are notoriously difficult 
to obtain so discussion will be limited to some general 
comments about experience obtained on sixteen-bit 
mini- and microcomputers. 

A typical roundness ‘profile’ would have 512 equally 
spaced radial ordinates each resolved over a ten- or 
twelve-bit working range. Exchange algorithm systems 
have now been working with data of this type in both 
industrial and research environments for several years 
and their robustness has been extablished. Even with an 
arbitrary choice of points for the initial basis, the 
exchange algorithm virtually always solves for the 
minimum circumscribing limcacon in five or less iter- 
ations, while the minimum zone only occasionally needs 
more than five, on real engineering profiles. The earlier 
(primal based) algorithms were run with poorly defined 
end-conditions, typically making thirty-two relatively 
coarse-stepped iterations and then thirty-two finer steps 
after which the process was terminated with a result 
assumed close to the desired optimum. The new tech- 
niques yield at least a tenfold saving in the number of 
iterations as well as giving a fully determined con- 
0 IMechE 1985 

vergence and, so, better accuracy. With both algorithms 
the iteration is dominated by the almost identical com- 
putation and checking of the updated figure, so the 
program size and the cycle times are closely similar on 
similar machines programmed in the same language. A 
tenfold speed increase is also obtained. 

The direct use of revised simplex on dual programs 
representing limacon fitting has been studied using a 
specially developed package containing only the sub- 
routines essential for solving this class of problem. 
Memory requirements are only slightly larger than 
those of exchange algorithms and execution is typically 
about 20 per cent slower. This is due to the simple way 
artificial variables are treated. This difference can be 
removed at the cost of extra program length. 

These comparisons were made between programs 
written in FORTRAN IV using software floating point. 
Iteration cycle times were typically between one and 
two seconds so the speed increase of the dual-based 
methods is over a range of some importance in a pro- 
duction environment, say a reduction from over a 
minute to a few seconds for the total calculation. 

The limacon fits have simple exchange rules which 
can be expressed in a few numerical comparisons and 
logic operations. Thus in a specialized system both a 
size reduction and a speed increase wouid be obtained 
by replacing the direct use of revised simplex on the 
dual by an exchange algorithm. However, the exchange 
logic is specific, so if several different references are to 
be implemented there will be less shared code. With 
more complex geometries it is of even greater impor- 
tance that the efficiency of dual-based methods is 
obtained. Yet, with even the simplest three-dimensional 
case the exchange rules are becoming quite complicatcd. 
The indications to date suggest that computer-based 
instrumentation may standardize towards a modified 
version of revised simplex rather than the pure 
exchange algorithms. 

9 CONCLUSIONS 

This paper has shown how the formal application of 
mathematical theory, in this case mathematical pro- 
gramming, can have a dramatic effect on a field such as 
surface metrology which has historically used an intu- 
itive approach. A new generation of algorithms for lim- 
iting value roundness references has been produced 
which are more precise and run at least ten limes faster 
than their predecessors with similar memory require- 
ments. Duality theory has shown that the ‘obvious’ geo- 
metrical method is not the best approach: the new 
method seems obvious once it has been expressed ! 

The study of exchange algorithms gives a very clear 
insight into the geometrical implications of reference 
fitting. This is of great metrological significance, for 
measurement controls should always be based on engin- 
eering relevance rather than a mathematically conve- 
nient abstraction. The exchange algorithm also provides 
a good method for hand solution should that prove 
necessary, as it may in the context of standardization. 
Relatively flexible measurement systems are likely to use 
a more general implementation of a revised simplex 
algorithm. This is no cause for concern: both are firmly 
based on the same theoretical foundation. 
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