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A note on the three-point method for roundness measurement
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Abstract

This technical note presents two enhancements to three-point method for roundness measurement. They enable measuring a larger bandwidth
and also present a logical progression from two-point profile to three-point roundness measurement using the combined method. Simulated
profiles with and without step variations are used to demonstrate these improvements.
© 2004 Elsevier Inc. All rights reserved.
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. Introduction

Three-point method for roundness detection[1] is com-
only used to separate the influence of spindle error from
art error. This technique has a major limitation in that cer-

ain harmonics are not recoverable from the combined signal.
here are also other issues with this approach. Reconstruc-

ion of the profile from the combined signal is subject to
ncertainties. Accurate estimation requires that the part be
ampled at exactly the probe spacing. But this prevents sur-
ace wavelengths smaller than probe spacing to be recorded.
FFT method is useful in recreating the signal but introduces
istortion when there are sharp features.

The combined three-point method (C3P) has been pro-
osed[2] to overcome the issue of distortion in presence
f sharp features. This method requires a reference signal
nd uses the DFFT reconstruction, which itself is subject to
armonic suppression. Also, the C3P method uses a second
rder polynomial interpolation during reconstruction, which

ntroduces distortions in certain cases. In this context, we

surable bandwidth using the DFFT method. Then, we m
ify the inclination method[2] using limacon fitting to ensur
better performance. These result in greater scope for the
method. Simulated profiles with and without steps are us
illustrate the improvements. The next section outlines a
summary of two-point method for profile measurement. T
is followed by a discussion on improvements to three-p
method, results and conclusions.

2. Two-point profile measurement

The objective of the two-point method[3] is to remove the
influence ofz directional error when scanning a profile inx
(seeFig. 1). If a surface is described by functionf(x),D is the
probe interval andS is the sampling period, output of pro
A is mA and probe B ismB, then

mA(xn) = f (xn) + ez(xn) (1)
ropose two enhancements to three-point roundness mea-
urement. First we present an approach to enhance the mea-
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mB(xn) = f (xn − D) + ez(xn) (2)

The difference function

m(xn) = mA(xn) − mB(xn) (3)
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Fig. 1. Two-point profile measurement.

cancels the errorez. An approximate derivative can be defined
as:

m′(xn) = (mA(xn) − mB(xn))

D
(4)

The original profileZ is recreated by integrating Eq.(4)using
the iterative equation given in Eq.(5):

Z(xn) =
n∑

i=1

m′(xi)S = Z(xn−1) + m′(xn−1)S (5)

BecauseZ(x0) is unknown, its value is assumed to be zero.
The resultingZ profile is therefore inclined to theX-axis and
the slope is removed by least-squares fitting to obtain theZ
profile. Previous reported work[3] has referred to this method
as the inclination method whenS=Dand generalized method
whenS �= D. WhenS= D, the profile is reconstructed accu-
rately because the differential is no longer approximate. The
problem with this case is that surface wavelengths smaller
than the probe spacingD cannot be captured.

3. Combined three-point method for roundness

The objective of the three-point method[2] for roundness
is to remove errors associated with the spindle during profile
m
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Then, as before in the profile method, a differential output

m(θ) = mA − 2cos(φ)mB + mC

= r(θ) − 2cos(φ)r(θ − φ) + r(θ − 2φ) (9)

is defined to remove the errors. The problem is to obtain the
profile r(θ) from differential output given in Eq.(9).

3.1. DFFT method

A solution to this problem[1] is to take the FFT of both
sides of Eq.(9) to obtain

M = R(1 − 2cos(ϕ) e−jw + e−2jw) = RH (10)

The profile can then be obtained by taking the inverse
transform of (M/H). This method, although known, is often
not suitable because the transfer functionH drops to zero at
certain harmonics[1]. Therefore, the profile cannot be re-
constructed accurately if these harmonics are present in the
surface. To overcome this problem, we study the choice of
probe angles as a potential solution.

While the transfer function H drops to zero at certain har-
monics for any probe angle in the continuous domain, the
same is not true in the discrete domain. Because FFT cap-
tures only certain discrete frequencies, there are only selected
p tely
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easurement. In this case, letr(θ) represent the surface,mA,

B andmC represent the probe outputs,φ represent the ang
etween the probes andex and ey represent the X and
omponents of the spindle error (seeFig. 2). Then,

A(θn) = r(θn) + ex(θn) (6)

B(θn) = r(θn − φ) + ex(θn) cos(φ) + ey(θn) sin(φ) (7)

C(θn) = r(θn − 2φ) + ex(θn) cos(2φ) + ey(θn) sin(2φ)

(8)

Fig. 2. Three-point roundness measurement.
robe angles for which the transfer function H comple
uppresses certain harmonics. For purpose of simplicity,
nteger probe angles are considered here. For typical a
ations where harmonics from 1 to 100 are relevant, p
ngles (only from 1◦ to 120◦ are listed) belonging to th

ollowing set result in complete suppression of certain
onics:

Probe angle (◦): {4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24,
27, 28, 30, 32, 35, 36, 40, 42, 44, 45, 48, 50, 52, 54, 55
60, 63, 64, 65, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 85
90, 92, 95, 96, 99, 100, 102, 104, 105, 108, 110, 112,
115, 116, 117, 120}

Thus, anyintegerprobe angle not belonging to the
bove result in complete transmission of the signal by p

ng the zeros of the transfer function well beyond the 1
armonic as shown in an example inFig. 3. However, it is also
ointed out that when|H| is almost but not identically zer

hose harmonics will be sensitive to uncertainties in prob
le value. This is illustrated inFig. 4. A surface with a 45t
armonic is reconstructed using three probes assumed
eparated by 23◦ each, while the true probe angle is 23.◦
to simulate probe angle uncertainty). Also shown is a pr
ith a 44th harmonic that is reconstructed using a prob
le of 23◦, while the true probe spacing is 23.25◦. It is seen

hat the surface with 45th harmonic is much more sens
o probe angle uncertainties because|H| for that harmonic i
uch smaller.
There is another problem with the use of the DF

ethod, as reported by Gao and Kiyono[2]. This method
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Fig. 3. Effect of probe angle on zeros of transfer function H.

does not perform well in presence of spikes or sharp fea-
tures in the surface. To overcome this problem, they propose
a combined method that utilizes the low frequency compo-
nents from the DFFT method as a reference. A modification
to this method is explained next.

3.2. The inclination method

When the sampling interval is equal to the probe spacing,
reconstruction can be achieved by integration. That is:

z(θ) = m(θ) + 2cos(φ)r(θ − φ) − r(θ − 2φ) (11)

The first two points inZ are set to zero and the profile is
reconstructed. The key point to note is that while such re-
construction resulted in an inclined profile in the two-point
method, reconstruction in the three-point method results in
an eccentric circle. Therefore, we remove a limacon

a cos(θ) + b sin(θ) − r (12)

using the least-squares method to obtain the true profile Z.
Previous reported literature[2] suggests a second order fit to
obtain the original Z profile.Fig. 5shows an example profile

F rigi-
n litude
(

Fig. 5. Effect of curve fitting criteria on reconstructed profile.

Fig. 6. DFFT output for probe angles 18◦ and 23◦.

along with a limacon fit and a second order fit to illustrate the
case.

The major issue with this method, as with the two-point
method is that surface wavelengths smaller than the probe
interval cannot be captured. To overcome this method, the
combined method was proposed earlier[2].

Fig. 7. C3P output for probe angles 18◦ and 23◦.
ig. 4. Effect of probe angle uncertainty on reconstructed profile. O
al profile has amplitude of 1. Reconstructed profile has smaller amp
0.7�m for 44th harmonic and 0.4�m for 45th harmonic).
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3.3. The combined method

The combined method essentially samples at a smaller
interval than the probe spacing. Then, the resulting data is
partitioned into groups, with each group having points that
are at exactly the probe spacing. Therefore, each group can
be reconstructed using the inclination method. The problem
then is to align the groups with each other. This is achieved
by using the profile from the DFFT method as a reference.
Because this method uses the DFFT as a reference, it is sus-
ceptible to failure when the part harmonic falls in the dead
zone. The algorithm of the C3P can be found in[2], but to
enhance the performance of this method, we recommend that:

1. Careful choice of probe spacing based on the set outlined
earlier,

2. Eccentric circle fitting be used for each group as opposed
to second order curve fitting.

4. Results

A simulated profile with two sinusoids (10th and 19th
harmonic) is shown inFig. 6. Probe spacing of 18◦ and 23◦
is considered. The reconstructed profile by DFFT method
fails to detect the 19th harmonic when probe angle is 18◦. The
r le
w is
p

5. Conclusions

This note reports on two developments in three-point
method that enhance the performance of the combined
method. Utilizing carefully chosen angles for probe spac-
ing based on the set outlined earlier increases the measurable
bandwidth, thus allowing greater scope for the DFFT method.
Also, an improvement to the inclination method is presented
that recognizes the fact that iterative reconstruction produces
eccentricity in the output that can be corrected using limacon
fitting. These enhancements together help increase the scope
of the C3P method.
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