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Abstract
In industries, precise measurement of different form errors is critical and challenging for stringent geometric and dimensional 
control in manufactured part. These form errors have significant influence on the functional performance of an industrial 
product that arises due the inherent invariability in measurement techniques and manufacturing devices. Several research have 
been conducted for evaluation of important form errors such as straightness, flatness, circularity, cylindricity and sphericity 
using different computational methods. The need of computational methods is justified as they minimize calculation time, 
human errors and provides improved tolerance values in assessment of form errors. In the same context, this paper presents a 
comprehensive review and discussion on different computational techniques for distinctive form error evaluation in engineer-
ing components. The present work mainly focused on aspects of mathematical formulations and the computational techniques 
i.e., traditional methods and advanced optimization algorithms, employed for precised evaluation of these errors. Based on 
the detailed review, several future research directions were described. Finally, last section presents concluding remarks on 
computational methods in modelling and precise evaluation of form error in manufactured components.
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1  Introduction

In metrological context, the manufacturing of precised fea-
tures and dimensions is ever increasing in modern competi-
tive environment and have gained significant interest among 
manufacturing industries to conform the rigorous dimen-
sional and form tolerance requirements [1]. The features 
created in a component through any manufacturing process 
may vary in systematic or random means depending on the 
inherent variability in machines [2]. Therefore, maintain-
ing the quality and interchangeability among manufactured 
components and features as per the design specifications 
and tolerances becomes equally important for functioning 
individually or in an assembly [3]. In early days, the form 
and dimensional errors are measured and evaluated utiliz-
ing the traditional gauges, instruments, and calipers [4]. In 
recent years, the measurement and inspection of manufac-
tured parts have been governed by coordinate measuring 

machines (CMMs) that plays a significant role in automatiz-
ing and reducing uncertainty in quality control process [5]. 
The CMM measured data realized for different features are 
in the form of x, y and z coordinate values, with increased 
accuracy owing to its capability in realizing large datasets of 
the sampled surface [6]. The datasets are further processed 
and evaluated surface metrological feature based on com-
plex verification algorithms to verify their conformance as 
per specified tolerance. The traditional steps for form error 
evaluation is shown in Fig. 1.

The verification algorithms generally follow least square 
method (LSM) to evaluate different form errors of manufac-
tured surface features because of its ease in computation and 
distinctiveness in solution [7, 8]. Although, LSM is widely 
used for determining geometric and dimensional tolerances, 
however, it does not strictly adhere to the minimum zone 
solution required as per the ANSI Y14.5 standard [9, 10]. 
The LSM techniques is easy to code however lead to over-
estimation of tolerances which may results in rejection of 
potentially functional parts, thus resulting in economic loss 
[11]. The ISO standard while stating minimum zone attrib-
ute does not specify any particular technique for determin-
ing the form errors [12]. For attaining exact minimum zone 
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error, several methods have been developed in past studies 
involving specific analytical and computational techniques. 
The analytical methods make use of mathematical charac-
teristics of underlying objective function for optimization. 
In contrast, the computational techniques exploit numerical 
value of specific objective function for optimization. Though 
the analytical methods are useful, yet the computational 
techniques are advantageous when analytic properties of 
the objective function are difficult to realize [13]. In addi-
tion, the computational techniques may provide rapid results 
when the complexity or non-linearity of the minimum zone 
method need to be solved efficiently in form error evaluation 
[14]. The computational techniques are further classified as: 
traditional algorithms and non-traditional (advanced) algo-
rithms for improving the accuracy in form error evaluation.

The traditional algorithms used in literature for solving 
complex and non-linear form error problems are downhill 
simplex search, linear programming, iterative reweighted 
least square algorithm, discrete and linear Chebyshev 
approximation and finite-differences derivative descent 
approach [16]. These algorithms are ubiquitous and compu-
tationally efficient; however, they does not provide accurate 
results owing to their mathematical approximations. These 
algorithm also suffers to attain global best solution in case 
of higher nonlinearity where a number of local solutions 
are also present [17]. To resolve these issues, advanced 
optimization algorithms are utilized which are flexible, 
adaptive, gradient free, can find optimal solutions and thus 
successively employed by researchers in the field of metrol-
ogy. In the last decade, many optimization techniques such 
as genetic algorithm (GA), particle swarm optimization 
(PSO), artificial bee colony (ABC), Differential evolution 
(DE), Beetle search algorithm, ant colony algorithm and 
many improved optimization algorithms had been used for 
determination of form error. These advanced optimization 
algorithms have their own advantages and disadvantages. 
GA effectively can find the solution of complex real life 
objective problems with different chromosome encoding, 
however, it requires tuning of various operators such as 
crossover, mutation, selection etc. [18]. The PSO algorithm 
is swarm-based algorithm inspired by swarm movement in 

search space also have to tune some parameters and may fall 
in local optima some time [19]. The ABC algorithm based 
on foraging behavior of honeybee can obtain high quality 
solutions, but it suffers from slow convergence speed [20]. 
Though, the DE is contrast to GA in terms of mutation pro-
cess and selection, however, it also have parameters to be 
defined at the beginning [21].

Aforementioned computational techniques i.e., tradi-
tional, and advanced algorithms are established algorithms 
and successfully applied in the last two decades for scientific 
research, engineering, and medical applications [22, 23]. 
Moreover, these computational algorithms are also effec-
tively utilized in determining qualitative characteristics of 
surface metrological features including straightness, flatness, 
circularity, cylindricity and sphericity. These computational 
techniques are proving to be milestone in form error evalua-
tion and still no work is available that may educate research-
ers about the qualities and performance of these techniques 
for solving such complex problems. In the same context, 
this review paper makes an attempt to identify and cover 
all aspects of computational techniques available in litera-
ture that may have been utilized in assessment of any form 
errors for different manufactured components. Furthermore, 
some hybrid techniques combining the advantage of two 
techniques, have also been studied and discussed in form 
error evaluation. The next section introduces the basic ter-
minology and mathematical formulation of different form 
errors in literature. Further, in subsequent section each form 
error i.e., straightness, flatness, circularity, cylindricity and 
sphericity, is discussed and summarizes for application of 
different computational techniques involving traditional and 
advanced optimization algorithms. Later, application areas 
for various form error evaluation is discussed. Finally, future 
research directions are discussed and summarized based on 
the comprehensive review. Figure 2 depicts the publication 
trend in form error evaluation using different computational 
techniques.

Fig. 1   Schematic showing traditional steps during form error evaluation [15]



1201A Comprehensive Review on Computational Techniques for Form Error Evaluation﻿	

1 3

2 � Mathematical Formulations

This section presents the form error definition and math-
ematical formulation for straightness, flatness, circularity, 
cylindricity, sphericity and conicity available in literature.

2.1 � Straightness Error Formulation

In common terms, the straightness error can be defined as 
the deviation from the reference imaginary perfect straight 
line. As per ISO, the minimum zone straightness error is 
referred to as the least distance between two ideal paral-
lel lines enclosing the actual straight line created from 
the measured points as shown in Fig. 3 [24]. The meas-
ured line element of any surface is represented by n data 
points, where the x, y and z coordinates of i th data point 
( i = 1, 2,… n ) are given by either 

(

xi, yi
)

 or 
(

xi, yi, zi
)

 in two 

and three dimension, respectively. Let the ideal straight line 
in 2-dimensions is represented as: y = lmx + y0 , where lm 
and y0 are denoted as defining factors of the equation. The 
vertical deviation measured along y axis may be considered 
as: Vd = yi −

(

lmxi + y0
)

 . Although, the vertical deviation 
can be easily determined using LSM, however, the actual 
straightness error is measured by normal deviation only [25, 
26]. The normal deviation Nd equation of the corresponding 
point from reference edge can be formulated as:

If the maximum and minimum value among these devia-
tions are denoted as Ndmax and Ndmin , then the straightness 
error can be determined as: Ste = Ndmax − Ndmin.

2.2 � Flatness Error Formulation

The flatness can be considered as an extension of straight-
ness error in three dimensions. In practice, flatness error may 
be defined as the deviation of measured planar surface from 
the reference imaginary perfect planar surface. In terms of 
minimum zone method, the flatness error may be defined as 
the tolerance zone between two parallel planes within which 
the measured plane points must lie as depicted in Fig. 4 [27]. 
The i th data point from any measured planar surface is rep-
resented by 

(

xi, yi, zi
)

 . As per the ISO standard, all measured 
data points for i = 1, 2,… n , must lie in between two ideal 
planes which are represented as

where a0 , b0 and c are designated as defining parameters. 
The flatness determined in terms of vertical deviation 

(1)Nd =
yi −

(

lmxi + y0
)

√

1 + l2
m

(2)z = a0x + b0y + c

Fig. 2   Publication trend showing publications on computational tech-
niques in form error evaluation over the years

The actual straight 
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Fig. 3   Schematic for Straightess error Fig. 4   Schematic for flatness error evaluation
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for any measured point from given surface is given as: 
Vd = zi −

(

a0xi + b0yi + c
)

 . The normal deviation of meas-
ured point 

(

xi, yi, zi
)

 , from the reference plane can be calcu-
lated as:

The maximum and minimum deviations of all measured 
points from reference planes are denoted as Ndmax and Ndmin , 
then the flatness error tolerance zone can be determined as: 
Fe = Ndmax − Ndmin.

2.3 � Circularity Error Formulation

The circularity error formulation and evaluation is important 
in context of mechanical parts, as circular feature forms most 
basic geometric element of any component [28]. As per ISO 
standards, circularity error referred to as the minimum radial 
deviation between two concentric circles enclosing all the 
measured points of actual circular feature as shown in Fig. 5 
[29]. The radial deviation is computed along the radius from 
the circle’s center to the measured point of actual profile. In 
addition, there will be several sets of concentric circles that can 
enclosed the measured profile data, however only one combi-
nation will have the minimum radial deviation. Assuming the 
ideal center of minimum zone circle is at 

(

a1, b1
)

 , the radial 
distance from measured profile i th point ( xi, yi ) and to the 
center is given as:

where a1, b1 are defining parameters. If Rmax and Rmin are the 
maximum and minimum radius of circle having all measured 
profile data points, respectively, then the circularity error can 
be mathematically defined as:

(3)Nd =
zi −

(

a0xi + b0yi + c
)

√

1 + a2
0
+ b2

0

(4)Ri =
(

(

xi − a1
)2

+
(

yi − b1
)2
)

1

2

(5)Ce = f
(

ai, bi
)

= Rmax − Rmin.

2.4 � Cylindricity Error Formulation

The cylindricity error evaluation has a significant impact 
on the functioning of assemblies, rotation and wear resist-
ance. Based on minimum zone criterion, cylindricity error 
is defined as the radial difference between two concentric 
cylinders enclosing all extracted cylindrical surface data 
points as shown in Fig. 6 [30]. Thus, an ideal cylinder 
is utilized having the axis of this ideal cylinder may be 
defined by an arbitrary point 

(

x0, y0, z0
)

 with direction vec-
tor as ( l,m, n ). The ideal axis may be defined mathemati-
cally as:

where x0, y0, z0, l,mandn are designated as defining param-
eters of the equation. If the i th point of measured surface are 
denoted as 

(

xi, yi, zi
)

 , then the radial distance from the center 
of minimum zone cylinder and point ( xi, yi, zi) on measured 
cylinder profile can be evaluated as:

where a =
(

yi − y0
)

⋅ n −
(

zi − z0
)

⋅ m  ;  b =
(

zi − z
0

)

⋅

l −
(

xi − x0

)

⋅ n ; c =
(

xi − x0
)

⋅ m −
(

yi − y0
)

⋅ l.
Then, if Cdmax and Cdmin are the maximum and mini-

mum radial distance of cylinder having all measured 

(6)
x − x0

l
=

y − y0

m
=

z − z0

n

(7)Cd =

√

a2 + b2 + c2

l2 + m2 + n2

( 1, 1)

Circularity error

Measured profile

Concentric circles

Fig. 5   Schematic for circularity error evaluation Fig. 6   Schematic for cylindricity error
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profile data points, respectively then the cylindricity error 
can be evaluated as Cye = Cdmax − Cdmin.

2.5 � Sphericity Error Formulation

Earlier, the above four form errors are mostly determined 
in industries, however, the evaluation of sphericity error is 
also need of hour due to immense utilization of spherical 
features especially in bearing industries. The sphericity 
is an important form error that may affect the rotating 
and assembly parts significantly and may hamper intended 
functionalities of mechanical parts [31]. Though, the 
concept of sphericity error is not included in the basic 
form errors and is not followed by ISO standards [29], 
the definition based on minimum zone solution can be 
formulated as the radial distance between two concentric 
spheres enclosing all the data points of measured sphere 
profile as shown in Fig. 7. Suppose the ideal center of 
minimum zone sphere is at 

(

x0, y0, z0
)

 , the radial distance 
from measured profile i th point ( xi, yi, zi) and to the center 
is given as:

where x0, y0, z0 are defining parameters. If Rmax and Rmin 
are the maximum and minimum radius of sphere hav-
ing all measured profile data points, respectively, then 
the sphericity error can be mathematically formulated 
as:

(8)Ri =
(

(

xi − x0
)2

+
(

yi − y0
)2

+
(

zi − z0
)2
)

1

2

(9)Se = Rmax − Rmin.

3 � Computational Techniques for Various 
Form Error Evaluation

From the above section, it is evident that the minimum 
zone method evaluate accurately different form errors in 
comparison to least square method. However, the utili-
zation of minimum zone method brings non-linearity in 
the form error equation, which requires different compu-
tational techniques for their solution. In this section, an 
attempt has been made to present the discussion on litera-
ture available for all form error evaluation using traditional 
and advanced optimization algorithms.

3.1 � Straightness Error Evaluation Using 
Computational Techniques

3.1.1 � Traditional Techniques

For obtaining the minimum zone solution, several research 
works are available that utilizes traditional computational 
techniques in the form error metrology. In the same con-
text, computational geometry-based technique was pro-
posed in [32] for fast and effective processing of the 
form data along with CMM data and further evaluation 
of straightness error. Initially, the data points are divided 
into two convex hull sub-sets and then antipodal set of data 
points are utilized for finding the minimum zone straight-
ness error. The results after comparing with literature 
reveals that the proposed computational geometry-based 
technique is computationally less complex, require short 
time for execution and has robust performance providing 
good solution. The computational method based on convex 
hull set and judgement formula was also presented in [33, 
34] for evaluating spatial straightness error, that proves 
computationally efficient and takes less time. In [35], the 
authors applied region-elimination search algorithm for 
straightness error evaluation dividing the line element data 
points into four different but similar regions. The elimi-
nation of data points is performed with iterations in the 
range of Δ,Δ∕2 and Δ∕4 based on optimal error value in 
the specified tolerance zone. When compared with past 
studies, the region-elimination search algorithm effec-
tively minimized the sample points and provided desired 
level of accuracy in straightness error evaluation. In [36], 
a successive quadratic programming (SQP) techniques was 
applied for accurate and fast evaluation of non-linear spa-
tial straightness error. The results of SQP technique are 
well within the range of 10–3 mm and are in accordance 
with literature.

A fast geometrically based computational algorithm is 
proposed in [37] for straightness error evaluation in which 

Fig. 7   Schematic for sphericity error evaluation
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the data points are processed by creating symmetric beta 
form error that is added to a line having randomly distrib-
uted slope and intercept. The results show that the pro-
posed computational algorithm outperformed well-known 
sorting algorithms in terms of computational complex-
ity. In [38], the authors used simplex search algorithm for 
determination of straightness error in a manufactured com-
ponent from the discrete data obtained from CMM. The 
results confirm effectiveness of the proposed algorithm 
and it is computationally efficient even for large sample 
size problems. For obtaining exact solutions in solving 
non-linearity of straightness error, a new combinatorial 
optimization procedure is developed and presented in [39] 
that neglects the points inside convex hull. The results 
suggested that the proposed approach is robust and better 
than the other traditional techniques found in literature, 
although the results takes higher computational time. The 
traditional Monte-Carlo method, owing to its ability to 
skip the complicated calculations, was widely utilized by 
researchers in finding the uncertainty involved in form 
errors of different features [40, 41]. However, for enhanc-
ing the accuracy, a modification of traditional Monte-Carlo 
techniques with error ellipse theory was introduced in 
[42] for evaluation of straightness error and solving the 
uncertainty issues more precisely. The addition of error 
ellipse theory helps in effectively defining the positional 
uncertainty of sample points in form of ellipse. The com-
parison of experimental trials results with proposed hybrid 
approach for straightness evaluation have error less than 
5%.

Zhu et al. proposed a defined point-surface distance func-
tion for straightness evaluation and comprises of two major 
phases including initial solution assessment and error cal-
culation. The proposed computational algorithm confirm its 
robustness and easy to use due to its adequate control over 
differential translation and rotation [43]. Similarly, for accu-
rate evaluation of straightness error, the authors proposed 
parameter less data envelopment analysis technique forming 
convex hull set as minimum zone [44]. The results proved 
effectiveness of the proposed procedure of data envelopment 
analysis having higher accuracy and takes less computational 
time in comparison to non-linear programming approach, 
LSM and optimization technique zone. Similar work is per-
formed in [45], the authors presented a non-linear optimi-
zation method (NOM) combining the least square method 
with simplex search techniques for evaluation of straightness 
error with improved efficacy. In addition, the data filtering 
technique is utilized to remove the outliers for improving the 
performance of the proposed algorithm which is confirmed 
by improved results as compared to traditional techniques. 
The results when compared with convex hull method and 
LSM were proved to be reliable and more precised on higher 
sample points of different manufactured parts.

3.1.2 � Advanced Optimization Techniques

The advanced optimization algorithm has several advan-
tages as compared to traditional computational techniques 
i.e., ease of use, simplicity, flexibility etc. Due to this rea-
son, several advanced optimization algorithm are applied by 
researchers for improving the accuracy in straightness error 
evaluation. Wang et al. applied basic genetic algorithm (GA) 
for evaluating straightness error obtaining improved results 
with precision as compared to traditional LSM method [46]. 
A new and improved GA is introduced in [47] for evaluating 
planar and spatial straightness error by solving the complex 
nonlinear fitness function subject to intricate constraints. For 
making the traditional GA more robust, a blend crossover 
operators is incorporated with population and offspring size 
taken as 20 each. The results of straightness error proved 
that improved GA outperformed traditional techniques 
efficiently. Cui et al. in their study applied classical parti-
cle swarm optimization (PSO) algorithm by changing the 
inertia weight as shown in below equation for evaluation of 
straightness error. The results for straightness error confirm 
that the PSO algorithm performed superior to traditional 
techniques and conventional GA technique [48]. Similarly, 
Mao et al. have applied PSO algorithm for evaluating spatial 
straightness error and found PSO has strong capability in 
solving such non-linear optimization problems effectively 
[49]. Furthermore, authors have utilized ant colony optimi-
zation (ACO) algorithm for straightness error assessment 
based on minimum zone error method. The fast convergent 
and precised results are advantages of ACO algorithm over 
conventional simplex search and Powell computational tech-
niques in determining straightness error. The ACO global 
search ability make it realized enhanced results as compared 
to GA [50].

For further enhancing the efficiency and local search 
ability of classical ACO algorithm, a new improved ACO 
algorithm is proposed for determining straightness error by 
hybridizing it with local search Powell method (see Fig. 8a) 
[51]. The hybrid ACO-Powell algorithm have enhanced the 
convergence speed significantly and results proves that the 
proposed algorithm outperformed basic GA and other tradi-
tional techniques in providing solution to straightness error. 
In [52], a search algorithm based on beetles’ variable step 
was introduced to evaluate the straightness error formulated 
using LSM method. The global search of beetle algorithm is 
enhanced by altering the step size as the iterations increased. 
The final results when compared with basic GA and PSO, 
the beetle antenna variable step algorithm provides supe-
rior solution. For evaluation of straightness error, a novel 
hybridization was performed combining artificial fish swarm 
algorithm (AFSA) with least square method. In addition, 
for improving the diversity and convergence speed of arti-
ficial fish swarm algorithm new mutation and elimination 
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mechanism were also added. The straightness error results 
were better for hybrid LSM—AFSA algorithm when com-
pared with traditional GA [53].

The advantage of differential evolution (DE) algorithm 
in terms of few controlling parameters, simple structure and 
effective exploration ability makes it suitable candidate in 
metrological feature evaluation [54]. Due to such pros, the 
authors in [55] proposed an improved differential evolu-
tion algorithm for solving non-linear axis straightness error 
fitness functions. The improved DE combines opposition-
based learning for better exploration and good point set 
method for enhanced exploitation for improving the overall 
performance of basic DE algorithm. When compared with 
past improved DE algorithm and traditional LSM method, 
the proposed improved DE shows superior results in terms of 
precised straightness error. In [56], the authors applied PSO 
algorithm for determining axis straightness error formu-
lated using LSM methodology. The results concluded that 
the accuracy of straightness evaluation improved by nearly 
25% as compared to conventional computational techniques. 
The fast convergence, less controlling parameters and better 

results are some of advantages of PSO algorithm in compari-
son to GA justifying the greater use of PSO for straightness 
error evaluation [57]. To overcome the traditional techniques 
problem of exploration, a hybrid simplex search—PSO algo-
rithm (see Fig. 8b) was proposed in [58] for straightness 
error evaluation. The results of the hybrid algorithm not only 
outperformed traditional techniques such as simplex, Powell 
method but it has also shown higher accuracy in comparison 
to ACO, GA.

Authors in [59] evaluated the straightness error apply-
ing a new improved version of artificial bee colony, named 
as IABC, from a set of CMM data points. In IABC algo-
rithm, first improvement was initialization of population 
that is based on opposition-based learning and second 
improvement deals with greedy selection for food source 
selection of employed bees. The results of IABC were 
superior for straightness error when compared with tradi-
tional ABC and other computational techniques in terms 
of convergence speed and global diversity. Recently, Hui 
et al. have proposed a hybrid method for straightness error 
evaluation by analyzing the assembly consistency factors 

Fig. 8   Flowchart for a hybrid ACO-Powell algorithm [51] b hybrid simplex search – PSO algorithm [58]
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combining GA optimized multi-class support vector 
machine and improved Kuhn–Munkres method [60]. The 
results prove that the proposed hybrid machine learning 
method can successfully minimized the straightness error 
thus reducing the assembly consistency index to 0.08 from 
0.19 (Table 1).

3.2 � Flatness Error Evaluation Using Computational 
Techniques

3.2.1 � Traditional Techniques

In past, several researchers have utilized traditional compu-
tational techniques in determining the flatness error from 

Table 1   Summary of computational techniques on straightness error evaluation

Computational technique Description Recommendation References

Computational geometry-based technique Traditional techniques Computationally less complex, require short time for 
execution

[32]

Convex hull set Exact solution and uniqueness in solution [33]
Convex polygon Computationally efficient and takes less time [34]
Region-elimination search Minimized the sample points and provided desired level of 

accuracy
[35]

Successive quadratic programming The results are within the range of 10–3 mm [36]
Geometry computational algorithm Outperformed well-known sorting algorithms in terms of 

computational complexity
[37]

Simplex search algorithm Computationally efficient even for large sample size [38]
Combinatorial optimization approach Robust but takes higher computational time [39]
Monte-Carlo method with error ellipse theory Successfully define the positional uncertainty of sample 

points and accurate results with 5% error
[42]

Distance function-based algorithm Robustness and easy to use due to its adequate control over 
differential translation and rotation

[43]

Data envelopment analysis Higher accuracy and takes less computational time in 
comparison to non-linear programming approach

[44]

Non-linear optimization method Results are reliable and precised on higher sample points [45]
Genetic algorithm (GA) Advanced optimiza-

tion algorithms
Improved results as compared to traditional LSM method [46]

Improved GA GA based on blend crossover operators outperformed 
traditional techniques efficiently

[47]

Particle swarm optimization (PSO) algorithm PSO algorithm performed superior to traditional tech-
niques and conventional GA technique

[48]

Particle swarm optimization (PSO) algorithm PSO has strong capability in solving such non-linear opti-
mization problems effectively

[49]

Ant colony optimization (ACO) algorithm ACO global search ability make it realized enhanced 
results as compared to GA

[50]

Hybrid ACO-Powell algorithm Enhanced the convergence speed significantly and outper-
formed basic GA and other traditional techniques

[51]

Beetles search algorithm The proposed beetle antenna algorithm with variable step 
provides superior solution than GA and PSO owing to 
higher diversity

[52]

Artificial fish swarm algorithm (AFSA) + LSM For improving the diversity and convergence speed of arti-
ficial fish swarm algorithm new mutation and elimina-
tion mechanism were added

[53]

Improved differential evolution algorithm DE combines opposition-based learning for better explora-
tion and good point set method for enhanced exploitation

[55]

Improved artificial bee colony (IABC) Initialization of population based on opposition-based 
learning and second improvement deals with greedy 
selection of employed bees

[56]

Particle swarm optimization (PSO) Accuracy of straightness evaluation improved by nearly 
25% as compared to conventional computational tech-
niques

[57, 58]

Hybrid simplex search – PSO algorithm Higher accuracy in comparison to ACO, GA for straight-
ness error

[59]

GA-multi-class support vector machine-
improved Kuhn–Munkres method

Reduced the straightness and assembly consistency index 
to 0.08 from 0.19

[60]
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CMM extracted data of different industrial parts. Raghunan-
dan and Rao used computational based geometric technique 
that follows convex hull concept for the evaluation of flat-
ness error extracting data points realized from CMM. They 
also investigated the adequate location of sample points and 
optimal sample size of data points for evaluating accurate 
flatness error. They found that poor surface quality requires 
higher amount of data points to be sampled for accurate 
evaluation of flatness error [61]. Damodarsamy and Anand 
applied a new technique based on normal plane for evaluat-
ing the minimum zone flatness error using a set of direction 
cosines parameters. Then simplex search methodology was 
adopted to search the zone and find the exact solution of the 
flatness error in terms of different parameters. The results 
revealed that normal plane method outperformed LSM, con-
vex hull and constrained optimization method for different 
size datasets in terms of flatness error [62]. Li et al. proposed 
a hybrid method combining reduced constraint region and 
convex hull concept for determining minimum zone flat-
ness error. The former emphasis is on exploring effective 
enveloping plane while the latter exploit the convex hull 
in that particular route. When compared with several well-
established traditional techniques, the reduced constraint 
region and convex hull hybrid algorithm outperformed all 
significantly for small as well as large sample size in flatness 
error evaluation [63].

Similarly, a geometric search approximation algorithm 
is presented for assessing the flatness error, based on three 
edge points treated as reference points and developing auxil-
iary and reference planes simultaneously. By comparing the 
distance differences, the value of flatness error were deter-
mined for different sample sizes. It was found that proposed 
method significantly reduced flatness error in the range of 
0.3 – 1.7 µm in comparison to convex hull method and LSM 
method [64]. Wang et al. in their study used modified variant 
of gray level co-occurrence matrix (GLCM) for effectively 
evaluating the flatness error based on gray scale. Based on 
GLCM method, three different parameters were determined 
namely, contrast, entropy, and correlation that in turn define 
the surface quality and influence the flatness error [65]. Zhu 
and Ding proposed a new computational techniques based 
on equality between the inner radius of the convex hull and 
width of a data point set for flatness error evaluation. The 
proposed approach provides almost exact solution and less 
computationally expensive as compared to other traditional 
techniques [66]. For finding straightness error, Ye et al. 
introduced novel adaptive and iterative neighborhood-based 
search strategy. The proposed approach follows the develop-
ment of initial datum plane using LSM and then candidate 
datum plane is created based on minimum value of flatness 
error defining the search space between new and old datum 
planes. The result of proposed approach provides exact value 

of flatness error which is comparable with other traditional 
techniques such as LSM and CPRS [67].

Tian et al. determined the minimum zone flatness error 
using region searching method from the extracted data points 
coordinates. The results concluded that proposed region 
searching technique determined flatness error value which 
is 5.97% better as compared to conventional LSM [68]. In 
order to improve the practicality, Xu et al. determined the 
minimum zone flatness error combining L9 orthogonal test 
design and area searching algorithm. The initial reference 
plane is created from the extracted data points and rotat-
ing coordinate system. The results found that the proposed 
approach are better than traditional techniques such as LSM, 
convex hull and computational geometry method, while the 
results are lesser accurate than advanced optimization algo-
rithm. However, the proposed method takes comparatively 
10 times lesser time in evaluation of flatness error as com-
pared to advance algorithms [69]. A robust convex hull set 
algorithm based on computational geometry is presented in 
[70] for evaluating flatness error effectively, coded further 
and utilized in a software application for the calibration of 
gauges in industries.

Although, the computational efficiency of convex hull 
method is reasonable, however, a modified convex hull edge 
method (CONHEM) is proposed in [71] for enhancing the 
efficiency in flatness error evaluation for higher data sets. 
The geometrical relationship was established between two-
dimensional projection and three-dimensional convex hull 
of an individual data point. From results, it was found that 
proposed CONHEM method is robust, computationally inex-
pensive and takes less time in flatness error evaluation as 
compared to different techniques such as OTZ, LAT, CPRS, 
COM etc. In [72], three different theorems were presented 
justifying the use of incomplete convex hull for the assess-
ment of flatness error, thus reducing the computational time 
in finding solution. The theorems explain the removal of 
redundant points, solution with lesser points and possible 
candidate selection at convex hull edges. The results were 
found to be effective and shows that computational effi-
ciency is improved significantly in determining the flatness 
error. Deng et al. proposed method based on valid charac-
teristic point having rapidly contracted zone for evaluation 
of flatness error using minimum zone method [73]. The 
method deals with rapidly contracting the tolerance zone of 
the geometric characteristics point parameters of enveloping 
feathers and iterated the minimum zone value quickly. When 
tested on large data points, the proposed method comes out 
as computationally fast and outperformed other traditional 
algorithm in flatness error evaluation.

For the evaluation of flatness error based on CMM data, 
the Monte Carlo simulation method was employed in [74]. 
The authors developed a model considering the repeatabil-
ity of the data points. The result from study confirms the 
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effectiveness of the method that evaluates flatness error with 
95% probability and validated it by optical glass results. 
Calvo et al. proposed a new vectorial method for evalua-
tion of flatness error evaluation from data coordinates. The 
accuracy of the proposed method is satisfactory and outper-
forming many well-recognized algorithm in flatness error 
evaluation [75]. Yue et al. investigated the flatness error 
using measured points classification technique in three major 
types such as low, high and saddle. The proposed approach 
classify set of low points as minimum zone low points and 
set of high points as minimum zone high points with none 
of the points appear in saddle one. The results revealed 
ten times higher speed of computation and provides better 
results when compared with conventional minimum zone 
method [76].

3.2.2 � Advanced Optimization Techniques

An improved genetic algorithm (IGA) with different off-
spring and population size is presented for solving the min-
imum zone flatness error. The proposed IGA incorporates 
blend crossover operator for enhancing the search capability 
and effective solving of separable objective functions of flat-
ness error. From results, it was found that IGA and PSO has 
same results with different value of parameters while IGA 
outperformed traditional LSM [77]. A modified artificial bee 
colony (MABC) algorithm was applied for fast and accurate 
evaluation of flatness error by introducing tabu search and 
traction bees concept. The proposed modification in classical 
ABC enhances the convergence speed with improved qual-
ity of solutions. The flatness error obtained by MABC were 
0.9 µm better than the basic ABC, GA and PSO algorithm 
thus establishing it effectiveness in finding better solutions 
[78]. Cui et al. proposed GA based method (GAM) for evalu-
ation of different form errors including flatness error. The 
results proved that proposed algorithm is easy to use, com-
putationally fast and have adequate precision. The straight-
ness error found were better than traditional techniques such 
as LSM, LAT and MRS [79]. Similarly, a robust and efficient 
differential evolutionary (DE) algorithm was applied for 
computing the minimum zone flatness error. Two different 
data samples were considered for flatness error computa-
tion and results are compared with elitist selection-based 
GA (EGA) and traditional LSM. It was verified from results 
that DE performed superior to EGA and LSM in terms of 
precised computation of flatness error [80].

Recently, a novel hybrid flatness error evaluation algo-
rithm is introduced combining the convex hull method with 
improved PSO. The improvement in PSO is incorporated in 
terms of non-linear inertia weight w and dynamic learning 
factors c1, c2 equations, which were determined after several 
trials. The results of flatness error based on proposed hybrid 
method was 44 µm better than classical PSO algorithm 

results [81]. Furthermore, Tseng in his study proposed GA 
based algorithm i.e., float encoding GA (FEGA) utilizing 
real encoding scheme, for flatness error evaluation. The 
results for flatness error shows that proposed FEGA is more 
effective and performed better than the traditional LSM 
and convex hull method [82]. Similarly, Zhang in his study 
also proposed hybrid optimization algorithm for evaluating 
minimum zone flatness error. The proposed algorithm pro-
vides hybridization of chaos optimization algorithm (COA) 
with Powell search method as shown in Fig. 9. Initially, the 
COA runs to perform global search and then Powell search 
utilized to exploit the good solutions found by COA. The 
results of flatness error proves that proposed COA-Powell 
search converges fast and provides more accurate results as 
compared to traditional methods and classical GA [83].

To improve the computational accuracy in determining 
flatness error, Yang et al. proposed an adaptive hybrid teach-
ing learning-based optimization (AHTLBO) to improve the 
search capability of the classical TLBO algorithm. The pro-
posed algorithm incorporates adaptive factor and hybridizes 
with shuffled frog leaping algorithm (SFLA) that further 
enhances the convergence speed and global search behav-
ior. It was found that the best results were obtained from 
AHTLBO and have faster convergence in comparison to 
basic TLBO, PSO, GA and LSM [84]. Zhang and Luo in 
their aim to further minimize the flatness error introduced a 
similar hybridization method combining Powell search and 
artificial fish swarm algorithm (AFSA) (see Fig. 9). The pro-
posed algorithm improved the exploitation behavior of basic 
AFSA algorithm using local search Powell method and thus 
improved the precised flatness error results. It was evident 
from results that proposed approach reaches to exact flatness 
error value at higher speed in comparison to GA, PSO and 
simplex search [85].

In recent times, Miko in his study employed regres-
sion analysis based on partial point sets for computing 
the flatness error using finite number of data points. The 
results concluded that regression analysis method effec-
tively predict the flatness error for different size of data 
points by taking help from extrapolation and predicting 
with higher regression coefficient nearly close to 1 [86]. 
Pathak and Singh in their study investigated various form 
errors including flatness using improved version of PSO 
algorithm named as MPSO. The MPSO generates new 
swarm positions and fitness solution using novel search 
equation. In addition, a greedy selection mechanism was 
incorporated for best position selection based on fitness 
solution. The results of flatness error, were better in com-
parison to GA and basic PSO, proves the effectiveness of 
the proposed MPSO in overcoming exploitation drawback 
of classical PSO algorithm [87]. Yu and Huang in their 
study presented an improved variant of PSO by introduc-
ing genetic hybrid gene, named as GHPSO accordingly, 
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for flatness error evaluation. The improvement is real-
ized by adding the crossover and mutation operators of 
GA in PSO algorithm. The results proved that proposed 
algorithm is simple, efficient, and provided more accurate 
results as compared to LSM, GAM, PSO [88].

A real coded efficient GA (EGA) is presented for flat-
ness error measurement and evaluation. In EGA, an elit-
ism operator is introduced replacing the roulette wheel 
selection and prevents the loss of good quality solutions. 
The results when compared with literature shows that the 
proposed EGA has higher accuracy, precision, and repeat-
ability [89]. Abdulshahed et al. applied cuckoo search 
(CS) optimization algorithm for flatness error computa-
tion and the results are compared with PSO, Convex hull 
method, and LSM procedure. The CS algorithm based on 
levy flights were proposed by Yang [90] is unique and 
has strong capability in solving non-linear optimization 
problems. The results for different data points proved that 
CS algorithm comprehensively outperformed PSO and 
convex hull method in flatness error evaluation of manu-
factured parts [91]. Jiang et al. proposed a new rotation 
method based on GA for determining the flatness error. 
The rotation angles of measured points were considered 
as parameters to be optimized using GA for minimum 
zone straightness. It was found that proposed approach 
with GA can efficiently determine the flatness error with 
ease [92] (Table 2).

3.3 � Circularity Error Evaluation Using 
Computational Techniques

3.3.1 � Traditional Techniques

In past two decades, several work have been performed 
utilizing traditional computational methods in evaluating 
circularity error for curved features in manufactured parts. 
A linear approximation technique (LAT) was proposed 
for various form error determination including circular-
ity in. The LAT requires larger time for computation of 
results, however, it has provided improved results, reduces 
complexity when compared with LSM and MRS method 
[93]. Venkaiah and Shunmugam in their study presented 
computational geometry technique for evaluation of cir-
cularity error from the measured profile data points. The 
proposed technique involves the use of convex hull and 
have the advantage of easy to follow with adequate visu-
alization at each iteration. From results, it was revealed 
that proposed method perform superior in terms of fast 
and accuracy in circularity evaluation in comparison to 
simplex search technique [94]. Dhanish in his work pro-
posed a new algorithm based on combination of coordi-
nate point transformation and Chebyshev approximation 
for computing the circularity error. The algorithm is coded 
in C +  + and results depicted that proposed hybrid method 
provides accurate value of circularity error with maximum 

Fig. 9   Hybrid COA-Powell search method procedure [83] and AFSA-Powell search [85]
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and minimum value as 0.111857 and − 0.11195 respec-
tively [95].

Huang et al. in their study applied a new concept based on 
area hunting method for specific arrangement of the meas-
ured data points in circularity evaluation. It was found that 
the area hunting method outperformed traditional LSM in 
terms of precised circularity value improved by 4.16% [96]. 
Zhu et al. used an effective steepest descent algorithm for 
determining circularity value based on ANSI and ISO stand-
ards. The steepest descent concept deals with finding mini-
mum translation distance between to convex polygons also 
LSM is used for providing initial guess points. The results 
of the circularity error proves the robustness and high preci-
sion of the steepest descent algorithm when compared with 

other techniques in literature. Also, the computational time 
increases as the number of sample data increases [97]. Raja-
gopal and Anand in their study applied selective data parti-
tion method for computing the circularity tolerance from the 
data extracted from CMM as per ANSI norms. The method 
follows the concept of fitting concentric circles utilizing the 
basis points. The basis points are determined by bifurcating 
the measured points into four quadrants. The results confirm 
the efficiency of selective data partition method over Voro-
noi method and LSM in terms of accuracy and efficiency 
for higher value of data sets [28]. Xiuming and Zhaoyao 
in their work proposed curvature method for evaluating 
roundness error to process CMM data points. The results 
were better than literature techniques which was based on 

Table 2   Summary of computational techniques on flatness error evaluation

Computational technique Description Recommendation References

Computational based geometric technique Traditional techniques Poor surface quality requires higher amount of data 
points to be sampled for accurate evaluation of 
flatness error

[61]

Normal plane method Outperformed LSM, convex hull and constrained 
optimization method for different size datasets

[62]

Hybrid reduced constraint region and convex hull 
concept

Outperformed traditional algorithms significantly for 
small as well as large sample size in flatness error 
evaluation

[63]

Geometric search approximation algorithm Flatness error in the range of 0.3—1.7 µm in com-
parison to convex hull method and LSM method

[64]

Gray level co-occurrence matrix (GLCM) Three factors i.e., contrast, entropy, and correlation 
define the surface quality and influence the flatness 
error

[65]

Approximate minimum zone method Easy for implementation, provides exact solutions 
and computationally efficient

[66]

Adaptive and iterative neighborhood-based search 
strategy

Provides exact value of flatness error which is 
comparable with other traditional techniques such 
as LSM and CPRS

[67]

Region searching method Flatness error value is 5.97% better as compared to 
conventional LSM

[68]

Hybrid orthogonal design with area searching 
algorithm

Takes comparatively ten times lesser time in evalu-
ation of flatness error as compared to advanced 
algorithms

[69]

Convex hull set algorithm Utilized in a software application for the calibration 
of gauges in industries

[70]

Modified convex hull edge method Method is robust, computationally inexpensive 
and takes less time in flatness error evaluation as 
compared to OTZ, LAT, CPRS, COM

[71]

Incomplete convex hull method Results were found to be effective and improved 
computational efficiency achieved

[72]

Valid characteristic point having rapidly contracted 
zone

Computationally fast and outperformed other tradi-
tional algorithm for larger data points

[73]

Monte Carlo simulation Evaluates flatness error with 95% probability and 
validated it by optical glass results

[74]

Vectorial method Good accuracy and outperformed well-recognized 
algorithm

[75]

Points classification technique Ten times higher speed of computation and better 
results as compared to conventional minimum 
zone method

[76]
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finding curvature radius of outer and inner convex hulls [98] 
(Fig. 10).

Ding et al. presented semi-definite programming for 
minimum zone circularity evaluation as a constrained 
optimization problem. In the framework of semi-definite 
programming, the interior point method was employed 
to solve the higher difficulty level and the programming 
complexity is lower. The results on different data sets 
confirms superiority of proposed method and efficient in 
determining roundness error [99]. Cui et al. proposed a 
new iterative neighborhood search approach (INSA) for 
computing circularity error from CMM extracted data 
based on minimum zone. The step of proposed approach 
deals with finding initial position and size of the searching 
scope. The next step is determining datum centers along 
with center and radius of searching area following evalu-
ation of circularity error. The results recommended that 
for 100 data points the time taken to search the solution is 
comparatively better (nine times) and provides accurate 

circularity value [100]. The use of convex hull method 
is common in determining different form error in vari-
ous literature. To this end, Xiuming and Zhaoyao extend 
the use of convex hull method for evaluating circularity 
error along with coordinate transmission. Two different 
data sets from CMM are considered to test the proposed 
approach and concluded that convex hull method based 
on polar coordinated can efficiently evaluate the round-
ness error [101]. Gadelmawla in his study introduced a 
novel computational geometric technique for evaluation 
of circularity error. The technique emphasis on finding 
three points for developing two features i.e., a circle and 
a point online connecting first and third point. The point 
sequence direction was found out based on second point 
location factor. When compared with digital instrument, 
the result of circularity by proposed approach doesn’t vary 
more than ± 2.27% with effective reduction in computation 
time [102]. Lei et al. proposed a novel geometry based 
Geometric Approximating Searching Algorithm (GASA) 

Table 2   (continued)

Computational technique Description Recommendation References

Improved Genetic Algorithm (IGA) Advanced optimiza-
tion algorithms

IGA incorporates blend crossover operator and 
outperform LSM

[77]

Modified artificial bee colony (MABC) algorithm Flatness error obtained by MABC were 0.9 µm bet-
ter than the basic ABC, GA and PSO algorithm

[78]

GA based method (GAM) Easy to use, computationally fast and have adequate 
precision

[79]

Differential evolutionary (DE) algorithm Superior to EGA and LSM in terms of precised 
computation of flatness error

[80]

Convex hull method with improved PSO Results of flatness error based on proposed hybrid 
method was 44 µm better than classical PSO 
algorithm results

[81]

Float encoding GA (FEGA) More effective and performed better than the tradi-
tional LSM and convex hull method

[82]

Chaos optimization algorithm (COA) with Powell 
search

COA-Powell search converges fast and provides 
more accurate results as compared to traditional 
methods and classical GA

[83]

Adaptive hybrid teaching learning-based optimiza-
tion (AHTLBO)

Adaptive factor and hybridizes with shuffled frog 
leaping algorithm (SFLA) provides fast conver-
gence

[84]

Powell search and artificial fish swarm algorithm 
(AFSA)

Reaches to exact flatness error value at higher speed 
in comparison to GA, PSO and simplex search

[85]

Regression analysis based on partial point sets Effectively predict the flatness error for different size 
of data points with regression coefficient close to 1

[86]

Modified PSO New search equation and greedy selection was 
incorporated that outperform GA and basic PSO

[87]

Genetic hybrid gene PSO Simple, efficient, and provided more accurate results 
as compared to LSM, GAM, PSO

[88]

Efficient GA (EGA) EGA has higher accuracy, precision, and repeat-
ability

[89]

Cuckoo search (CS) CS algorithm based on levy flights outperformed 
PSO and convex hull method in flatness error 
evaluation

[91]

Rotation method based on GA Efficiently determine the flatness error with ease [92]
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Fig. 10   Steps of MPSO algo-
rithm for flatness error evalua-
tion [87]
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for evaluating circularity error effectively. The proposed 
algorithm is shown in Fig. 11, which begins with allo-
cating initial reference point of a square, then following 
the radius coordinates of the vertex of square and finally 
evaluating the radial extreme distance for circularity error. 
It was found that the proposed GASA is easy to use and 
efficiently determine the minimum zone circle circularity 
error [103].

Jiang et al. presents a novel algorithm based on mini-
mizing the uncertainty in fitting data points by following 
the concept of profile confidence for evaluation of circular-
ity error. The results revealed that the computed circularity 
value is closer to actual value and provides significant accu-
racy owing to its ability to create actual round profile [104]. 
Similarly, Lei et al. proposed polar coordinate transform 
algorithm (PCTA) by calculating polar coordinates of circu-
lar region around least square circle for evaluating circularity 
error. The results proved that accuracy of PCTA in evaluat-
ing circularity error depends on two different parameters 
and higher value generally provided greater accuracy [105]. 
Li et al. evaluated circularity error using the integration of 
α-hull with the Voronoi diagram. The vertices of the Voronoi 
diagram by α-hull having minimum radius separation. The 
results showed higher efficiency of proposed approach in 
solving minimum zone circularity as compared traditional 
convex hull method [106].

3.3.2 � Advanced Optimization Techniques

Several authors have used advanced optimization algorithms 
for fast and accurate evaluation of circularity error, that will 
directly influence the life and performance of industrial and 
mechanical products. Chen et al. in their study proposed 
a hybrid method combining simulated annealing (SA) and 
Hooke–Jeeves pattern search for circularity error evalua-
tion. The SA algorithm is better in exploration however, to 
enhance the exploitation capability it was hybridized with 
local search Hooke–Jeeves pattern search method for balanc-
ing the diversity in hybrid algorithm. The results in determi-
nation of circularity error in Geneva cam and gear revealed 
that proposed hybrid approach have reasonably good accu-
racy and computationally inexpensive [107]. Wen et al. 
introduced an effective GA for computing circularity error 
without need of parameters such as crossover and mutation, 
that are mandatory requirement in classical GA. The results 
proved that efficient GA is taking lesser computational time 
(almost half) and accurate results (almost half) in compari-
son to classical GA for solving circularity error problem 
[108]. Du et al. proposed novel PSO algorithm by chang-
ing the inertia weight value and attaining its best value, for 
evaluation of minimum zone circularity error. The linearly 
changing inertia weight PSO results are compared with PSO 
having three different values of inertia weight i.e., 0, 0.5 and 

1. From results, it was found that inertia weight decreas-
ing linearly from 0.9 to 0.4 provides best results. The PSO 
based on inertia weight found superior to evaluate accurate 
circularity error as compared to GA and LSM [109]. Sun 
in his study proposed five new variants of PSO altering the 
inertia weight, number of swarms and maximum velocity 
for computing the circularity error. The results on deter-
mining floppy disk circularity error were collected for five 
variants of PSO and it was found that PSO with combination 
of maximum velocity and inertia weight provide accurate 
results than all other PSO variants and GA [110].

Kumar et al. proposed parameter less TLBO algorithm 
for circularity error measurement and the results are com-
pared with classical PSO algorithm. When comparing both 
advanced optimization algorithms in terms of accuracy and 
convergence time, it was found that both obtained similar 
results while TLBO takes higher computational time in 
comparison to PSO [111]. To solve the computationally 

Fig. 11   Flowchart of GASA for determining circularity error [103]
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expensive minimum zone tolerance circularity error effi-
ciently, a fast GA is presented by altering five different 
parameters, namely, mutation, crossover, search space, 
population size and end condition, of classical GA. The 
results of proposed GA are compared on seven different 
samples for determining circularity error with classical GA 
and EGA results. The results revealed that the computation 
time significantly reduced by selecting optimal GA param-
eters and that provides greater accuracy making it suitable 
candidate for on-line inspection [112]. Jin et al. in their 
work found circularity error based on classical DE algo-
rithm on two different data sets extracted from CMM. The 
results of DE circularity error were found to be similar to 
GA while it shows 10% improvement as compared to LSM 
[113]. Sinivasu and Venkaiah presented a hybrid method that 
employs LSM with novel probabilistic global search Laus-
anne (PGSL) technique for circularity evaluation based on 
minimum zone. The update procedure of hybrid algorithm 
balances the global and local search effectively for determin-
ing optimal solutions in search space. The results on three 
different datasets show that proposed approach have better 
accuracy in terms of circularity error as compared to LSM 
results [114].

Pathak and Singh in their study applied constriction 
factor PSO (CFPSO) algorithm for evaluation of differ-
ent form errors including minimum zone circularity. The 
constriction factor is added in the swarms velocity upda-
tion equation for enhancing the exploration in initial itera-
tions and lower value of this factor at higher iterations will 
enhance the exploitation behaviour of proposed algorithm. 
The CFPSO algorithm provides nearly 25% improvement in 
circularity error when compared with traditional techniques 
such as LAT, OTZ, LSM and GA and also have faster con-
vergence [115]. Rossi and Lanzetta in their study applied a 
metaheuristics such as GA for evaluation of circularity error 
within a given search space. Several datasets were utilized 
to calculate the circularity error, GA shows higher datasets 
incurred higher accuracy but also results in higher computa-
tional time [116]. Meo et al. in their work established a rela-
tionship among search space, data set size, inspection time 
and convergence speed in determination of minimum zone 
circularity evaluation using classical GA. It was found from 
results that lower size of search space, higher datasets results 
in accurate evaluation of circularity error however, inspec-
tion time increases with higher datasets [117]. Ming et al. in 
their study performed circularity evaluation by hybridizing 
AFSA with geometric algorithm for enhancing the diversity 
of basic AFSA algorithm and performance in determining 
optimal solution in search space. When compared with clas-
sical GA and AFSA, the results for circularity error were 
more precised with enhanced convergence achieved [118] 
(Table 3).

3.4 � Cylindricity Error Evaluation Using 
Computational Techniques

3.4.1 � Traditional Techniques

The cylindricity error determination is imperative in main-
taining precision of assembled and mechanical parts, that 
finally effect the wear rate among components and assembly 
accuracy. Several authors have used traditional computa-
tional techniques for evaluating minimum zone cylindricity 
error effectively. Lei et al. applied a new geometry opti-
mization searching algorithm (GOSA) for evaluating cylin-
dricity error, their work showed that the result of proposed 
approach depends on a pre-set factor δ. The higher the value 
of δ, the more accuracy can be realized through GOSA, δ 
with 0.0001 mm provides minimum cylindricity error [119]. 
Venkaiah and Shunmugam extended the use of computa-
tional geometric technique for creation of limacon cylinder 
in accurate evaluation of cylindricity error. The technique 
work on extreme points as determined by the development 
of convex hulls. The proposed algorithm is computationally 
fast and provides higher accuracy in finding solutions of 
cylindricity error [120]. Zhu and Ding in their work pre-
sented a new algorithm and explored the cylindricity error 
evaluation problem centered on kinematic geometry, deriv-
ing the signed point-to-surface distance function with its 
increment. The results on different CMM datasets found that 
proposed algorithm was computationally efficient and global 
solution realized owing to analytical initial solution [121].

Recently, authors have proposed an adaptive variational 
body approach to solve the minimum zone cylindricity prob-
lem from data points. The computational approach largely 
followed geometric transformation strategy for developing 
the cylindricity models. The results proved that proposed 
method outperform traditional LSC method by 4% in cylin-
dricity evaluation and have faster speed of computation 
[122]. Zheng et al. suggested a novel kinematic geometry 
optimization algorithm (KGOA) for cylindricity error solu-
tion, in which extraction of points for individual feature 
using convex set approach and projective transformation. 
The KGOA effectively determine the value of cylindricity 
error with half computation time in comparison to CMM 
software results [123]. The measurement and evaluation of 
cylindricity error was performed in studies of Liu et al. by 
utilizing four- and five-point separation techniques. These 
studies focused on creation of high precision cylindrical 
profiles that may be extended to in-situ measurement. The 
studies also adopted monte Carlo simulation method for 
evaluation of cylindricity error [124, 125]. Recently, Liu 
et al. further proposed a new method based on minimax 
concept for solving problem of cylindricity error. The mini-
max model is further linearized using Taylor expansion and 
used for approximating the cylindricity error. The results of 
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cylindricity error were in accordance with MZC, five-point 
method and other published techniques [126].

Based on ISO norms, Liu et al. suggested a new method 
based on increment-simplex algorithm for cylindricity error 
evaluation. The proposed method followed incremental steps 
in removing the redundant points or the points having less 
influence on the cylindricity evaluation. The results of their 
work recommended that increment-simplex algorithm pro-
vided accurate results for MZC and MIC with faster com-
putation of cylindricity error [127]. Zheng et al. proposed 
two different compensation techniques i.e., Slope and helix 
compensation method for accurate extraction and online 
measurement of cylindricity error. In addition, an improved 
simplex algorithm used for solving non-linear cylindricity 
problem. The results are in accordance with the experimen-
tal results [128]. Lao et al. presented a new hyperboloid 
method for determining efficiently cylindricity error not by 
creation of minimum zone directly but in the form of itera-
tive hyperboloids zone with initial cylindrical axis assumed 
as vertical. The results showed that the cylindricity realized 

with proposed approach was nearly half than conventional 
LSC method [129].

3.4.2 � Advanced Optimization Techniques

For determining and solving the non-linear minimum zone 
solution of cylindricity error, several work have been intro-
duced in past applying advanced optimization algorithm for 
guarantee global minimum solution at a faster rate than tra-
ditional techniques. Lai et al. suggested genetic algorithm 
(GA) for effective evaluation of cylindricity error. For 
increasing the efficiency of GA, several simulation trials 
were performed for choosing best value of population size 
and mutation operator. The GA approach provides supe-
rior results than least square method in terms higher accu-
racy and efficiency, for cylindricity error [130]. Yang et al. 
proposed a new and improved variant of harmony search 
algorithm named as IHS for evaluation of cylindricity error. 
The basic harmony search algorithm mimics the creation of 
music and its evaluation for achieving the optimization goal 

Table 3   Summary of Computational techniques on Circularity error evaluation

Computational technique Description Recommendation References

Linear approximation technique (LAT) Traditional 
compu-
tational 
techniques

Improved results with reduced complexity when com-
pared with LSM and MRS

[93]

Computational geometry technique Computationally fast and accurate in circularity evalua-
tion in comparison to simplex search technique

[94]

Hybrid coordinate point transformation and Chebyshev 
approximation

Provides accurate value of circularity error with maxi-
mum and minimum value as 0.111857 and -0.11195 
respectively

[95]

Area hunting method Outperformed traditional LSM in terms of precised circu-
larity value improved by 4.16%

[96]

Steepest descent algorithm High precision when compared with other techniques and 
higher computational time with higher sample size

[97]

Selective data partition (SDP) method Higher efficiency over Voronoi method and LSM in terms 
of accuracy

[28]

Curvature method Results were better than literature traditional techniques [98]
Semi-definite programming Superior and efficient in determining roundness error [99]
Iterative neighborhood search approach (INSA) For 100 data points the time taken to search the solution 

is comparatively better (nine times) and provides accu-
rate circularity value

[100]

Convex hull algorithm Convex hull method based on polar coordinated can 
efficiently evaluate the roundness error

[101]

Computational geometric technique In comparison of digital instrument, its accuracy doesn’t 
vary more than ± 2.27% with effective reduction in 
computation time

[102]

Geometric Approximating Searching Algorithm (GASA) Easy to use and efficiently determine the minimum zone 
circle circularity error

[103]

Method based on reducing uncertainty in fitting data 
points

Significant accuracy owing to its ability to create actual 
round profile

[104]

Polar coordinate transform algorithm (PCTA) Depends on two parameters and their higher value pro-
vides greater accuracy

[105]

α-hull with the Voronoi diagram Higher efficiency of proposed approach in solving mini-
mum zone circularity as compared traditional convex 
hull method

[106]
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[131]. For enhancing the convergence rate and accuracy of 
classical harmony search algorithm, chaos-based initializa-
tion is provided first, then a new dynamic factor is intro-
duced to maintain the diversity and finally cauchy mutation 
increase the search space solution quality. The results con-
cluded that IHS algorithm have higher accuracy than basic 
HS, also the improved HS converges to optimal solution in 
48 iterations as compared to 285 iterations taken by classical 
HS [132]. Wen et al. proposed quasi PSO (QPSO) for find-
ing the solution of non-linear cylindricity error. The results 
revealed that the exploration capability of QPSO make it 
suitable for enhanced searching in design space of cylin-
dricity error. The results on four different datasets shown 
that QPSO precisely determined the cylindricity error with 
improved efficiency [133].

Similarly, classical PSO algorithm have been used by dif-
ferent authors for determining the uncertainty involved in 
cylindricity error evaluation and knowing the effect of cylin-
dricity on position errors using L-F functions. The results 
showed higher convergence speed and greater accuracy for 
PSO as compared with GA and improved GA, and position 
error will be hampered with increase in cylindricity error 
[134, 135]. Li et al. proposed a hybridization of greedy sine 

cosine algorithm with differential evolution (HGSCADE) to 
develop a robust algorithm for cylindricity error evaluation. 
The present hybridization deals with adding opposition-
based learning initialization, greedy search and DE with levy 
flight for local search that enhances the performance of basic 
sine cosine algorithm by overcoming the pros of exploitation 
behaviour and premature convergence. The results based on 
statistical analysis revealed the superiority of HGSCADE 
algorithm over whale optimizer algorithm, ABC, SCA and 
SSA in terms of convergence speed and accuracy [136]. For 
using hybrid methods in evaluation of cylindricity error, 
Luo et al. explored the combination of ABC algorithm with 
Tabu search for enhancing the exploration capability of basic 
ABC algorithm. The results when compared with GA and 
ACO algorithm found to be accurate with faster convergence 
rate of 1.2 s only [137]. Wu et al. introduced a new PSO 
algorithm based on comprehensive learning (CLPSO) for 
improving the intensification in basic PSO and applied it to 
compute the cylindricity error. The local search of CLPSO 
were performed using Latin hypercube sampling method. 
The solution of cylindricity error proves that proposed algo-
rithm has fine search ability and is better in comparison on 
basic PSO [138].

Table 3   (continued)

Computational technique Description Recommendation References

Hybrid simulated annealing (SA) and Hooke–Jeeves pat-
tern search

Advanced 
optimiza-
tion algo-
rithms

Reasonably good accuracy and computationally inexpen-
sive

[107]

Effective GA Flatness error obtained by MABC were 0.9 µm better 
than the basic ABC, GA and PSO algorithm

[108]

Improved PSO method Superior to evaluate accurate circularity error as com-
pared to GA and LSM

[109]

New variants of PSO Provide accurate results than all other PSO variants and 
GA

[110]

TLBO algorithm Obtained similar results while TLBO takes higher com-
putational time in comparison to PSO

[111]

Fast GA with five different variation Results revealed that the computation time significantly 
reduced by selecting optimal GA parameters and it 
provides greater accuracy

[112]

Classical DE algorithm DE circularity error were found to be similar to GA, 
while it shows 10% improvement as compared to LSM

[113]

Hybrid LSM with novel probabilistic global search Laus-
anne (PGSL)

Better accuracy in terms of circularity error as compared 
to LSM results

[114]

Constriction factor PSO (CFPSO) algorithm Provides nearly 25% improvement in circularity error 
when compared with traditional techniques such as 
LAT, OTZ, LSM and GA and also have faster conver-
gence

[115]

Genetic Algorithm (GA) GA shows higher datasets incurred higher accuracy but 
also results in higher computational time

[116]

Genetic Algorithm (GA) Lower size of search space, higher datasets results in 
accurate evaluation of circularity error however, inspec-
tion time increases with higher datasets

[117]

Hybrid AFSA with geometric algorithm More precised with enhanced convergence achieved as 
compared to basic GA and AFSA

[118]



1217A Comprehensive Review on Computational Techniques for Form Error Evaluation﻿	

1 3

Similarly, multi-population genetic algorithm was pro-
posed in [139] for cylindricity evaluation. The results 
showed that proposed algorithm enhances global search 
capability and found better results with fast convergence in 
comparison to basic GA. Lee et al. presented support vector 
machine learning approach in replacing conventional LSM 
technique for evaluating cylindricity error. The proposed 
method converts the non-linear constraints into linear con-
straints for obtaining the solution. Supported by statistical 
analysis, it was found that proposed approach outperform 
non-linear programming and LSM in terms of CPU time 
and accuracy for higher number of datasets [140]. Zhang 
et al. introduced a hybrid algorithm for evaluation cylin-
dricity error combining the PSO and Chaos search method. 
The hybridization was imperative in terms of reducing the 
design variable search space and thus improves the chances 
of realizing optimal solutions. In comparison to LSM and 
basic PSO, the presented hybrid method provides better 
efficiency and accuracy in error evaluation [141]. Similarly, 
Chen et al. applied basic GA for evaluating cylindricity error 
in engine cylinder bore. The results suggests that basic GA 
found minimum zone cylindricity value with more accu-
racy as compared to other traditional algorithms [142]. Peng 
and Lu in their study proposed a hybrid memetic comput-
ing algorithm following hierarchical PSO (HPSO) and latin 
hypercube sampling (LHS) method. The LHS method aid 
basic PSO in improving it search capability and also muta-
tion operation is introduced for maintaining the diversity in 
hybrid approach. The results when compared with improved 
GA, PSO and DE algorithms found more accurate for cylin-
dricity error [143] (Table 4).

3.5 � Sphericity and Conicity Error Evaluation Using 
Computational Techniques

3.5.1 � Traditional Techniques

For adhering to stringent dimensional and geometrical 
control, past studies have explored different computational 
techniques for determining sphericity and conicity error. In 
the same context, Samuel and Shunmugam in their study 
employed computational geometric techniques for develop-
ing convex hulls and evaluated sphericity with reference to 
limacoid. The proposed method have similar computational 
complexity when compared with other methods in literature 
and have unique solution with faster computation time [144]. 
Xianqing et al. investigated the solution of cylindricity error 
using new geometry optimization searching algorithm 
(GOSA). The steps of GOSA includes establishment of ini-
tial reference with determination of initial error followed 
by regular hexagon development for calculating maximum 
difference of radius. Finally, the sphericity error is com-
puted by comparison of maximum radius and initial error. 

It was found that the initial reference point value has strong 
affect on the convergence performance. From results, the 
proposed method provides accurate, fast convergence and 
depends on pre-set factor δ. The lower value of factor δ gives 
most accurate results [145]. Wang et al. proposed a novel 
minimum radial separation (MRS) sphere method for mod-
elling and evaluating sphericity error. For testing of MRS 
method, several datasets were considered, the results showed 
that computation time is a function of data sets. In addition, 
it provides accurate sphericity error value with minimum 
computation time [146]. He et. al. determined conicity error 
based on sequential quadratic programming (SQP) method 
and signed distance function. The results showed that pro-
posed approach based on SQP have greater accuracy and 
better computational time in comparison to LSM [147].

Zhang et al. proposed a primal dual interior method for 
determining form errors in spherical and conical compo-
nents, also arch search technique was utilized in recursive 
manner for solution of these errors. From results, it was 
found that proposed method computes better results and 
applied less computational effort for global optimal solu-
tion in comparison to SQP and heuristic method [148]. In 
the context of reducing computational complexity, Liu et al. 
introduced a new intersection chord method in computation 
of sphericity error. The characteristic points are replaced by 
the intersected chords properties thus reducing the complex-
ity involved. It was revealed from results that though the 
sphericity error determined were similar to the published 
methods, however significant reduction in computation time 
was achieved [149, 150]. Mei et al. proposed a novel method 
based on asymptotic search for evaluation of minimum zone 
sphericity error. The proposed method develops a search 
sphere model for determining quasi- minimum zone sphere 
center considering least square sphere center as initial refer-
ence. The results showed that proposed asymptotic search 
method evaluated sphericity error accurately and efficiently 
for large number of extracted datasets [151].

In recent times, Zheng proposed a branch and bound 
(B&B) algorithm for computation of sphericity error. The 
method is based on realizing the minimum radial difference 
for square domain as lower bound, that increases further as 
the domain is further sub-divided. The domain thus divided 
will only considers the center of concentric spheres making 
lower bound equal to radial difference. Four different data-
sets were considered for testing the proposed algorithm and 
it was found that B&B algorithm is computationally fast, 
effective and provides exact results [152]. Prisco and Polini 
presented a new method based on transformation matrices 
for evaluation of sphericity and some other form errors. The 
coordinates extracted from CMM were transformed and best 
fit was realized considering the actual profile. The trans-
formation matrices also considered the invariance of least 
square sum and found effective results. The results proved 
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Table 4   Summary of Computational techniques on Cylindricity error evaluation

Computational technique Description Recommendation References

Geometry optimization searching algorithm (GOSA) Traditional
computational
techniques

The higher the value of δ, the more accuracy can be 
realized through GOSA, δ with 0.0001 mm provides 
minimum cylindricity error

[119]

Computational geometry technique Computationally fast and provides higher accuracy [120]
Kinematic geometry method Computationally efficient and global solution realized 

owing to analytical initial solution
[121]

Adaptive variational body approach Outperform traditional LSC method by 4% in cylin-
dricity evaluation and have faster speed of computa-
tion

[122]

Kinematic geometry optimization algorithm (KGOA) Half computation time in comparison to CMM soft-
ware results

[123]

Four- and five-point separation techniques Creation of high precision cylindrical profiles that may 
be extended to in-situ measurement

[124, 125]

Minimax concept Cylindricity error were in accordance with MZC, five-
point method and other published techniques

[126]

Increment-simplex algorithm Accurate results for MZC and MIC with faster compu-
tation of cylindricity error

[127]

Slope and helix compensation method Improved simplex algorithm used for solving non-
linear cylindricity problem. The results are in accord-
ance with the experimental results

[128]

Hyperboloid method Cylindricity realized with proposed approach was 
nearly half than conventional LSC method

[129]

Genetic algorithm (GA) Advanced 
optimization 
algorithms

Superior results than least square method in terms 
higher accuracy and efficiency, for cylindricity error

[130]

Improved harmony search (IHS) algorithm IHS algorithm have higher accuracy than basic HS, 
also the improved HS converges to optimal solution 
in 48 iterations as compared to 285 iterations taken 
by classical HS

[132]

Quasi PSO (QPSO) QPSO precisely determined the cylindricity error with 
improved efficiency

[133]

PSO with L-F function Higher convergence speed and greater accuracy as 
compared with GA and improved GA

[134]

Greedy sine cosine algorithm with differential evolu-
tion (HGSCADE)

Superior results over whale optimizer algorithm, ABC, 
SCA and SSA in terms of convergence speed and 
accuracy

[136]

ABC algorithm with Tabu search Results when compared with GA and ACO algorithm 
found to be accurate with faster convergence rate of 
1.2 s only

[137]

Comprehensive learning based PSO (CLPSO) Fine search ability and is better in comparison on basic 
PSO

[138]

Multi-population genetic algorithm Global search capability and found better results with 
fast convergence in comparison to basic GA

[139]

Support vector machine learning approach Outperform non-linear programming and LSM in 
terms of CPU time and accuracy for higher number 
of datasets

[140]

Hybrid PSO and Chaos search Provides better efficiency and accuracy in error evalu-
ation

[141]

Traditional GA Found minimum zone cylindricity value with more 
accuracy as compared to other traditional algorithms

[142]

Hybrid hierarchical PSO (HPSO) and latin hypercube 
sampling (LHS)

Results when compared with improved GA, PSO and 
DE algorithms found more accurate for cylindricity 
error

[143]
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that proposed method found quick and accurate results when 
compared with other traditional methods [153]. Soman et al. 
proposed a new selective zone search technique for evalu-
ation of minimum zone sphericity error. The method deals 
with determining five extreme points for development of 
inner and outer minimum zone spheres. The results on four 
different models were considered for validating the proposed 
approach. The results showed that proposed method provides 
accurate values and takes less computation time in compari-
son to non-linear optimization technique [154].

The conicity error was earlier determined by Chatterjee 
and Roth using Chebyshev approximation that defines best 
fit cone when only axis or vertex points are provided. The 
result of proposed method showed 0.0032 as conicity error 
in comparison to 0.0035 by LSM [155].Lei et al. further 
used branching and approximation algorithm for evaluating 
the sphericity error in balls. The method suggest creation 
of cube of some length around initial reference point, thus 
determining the length from center of sphere to vertex of 
cubes. The comparison provides the new reference point 
of new cube recursively. The results revealed that proposed 
method provides same result as traditional technique while 
taking only 0.12 s [156]. Lei et al. applied geometrical opti-
mization searching algorithm (GOSA) for conicity error 
evaluation. The method of GOSA is quite simple and already 
discussed in cylindricity error evaluation and results showed 
conicity error results were better than CMM results [157].

3.5.2 � Advanced Optimization Techniques

The sphericity and conicity errors have significant influence 
on the functional performance of rotational components, 
thus several advanced optimization algorithms were applied 
for improved evaluation of these errors. Wen and Song pro-
posed an immune evolutionary algorithm (IEA) that mim-
ics the defense mechanism of immunity system for evalu-
ation of sphericity error. The solution of sphericity error 
were determined by EGA, IGA and IEA on three different 
datasets. The results showed that IEA performed better than 
IGA in accuracy and takes only 2.2 s in comparison to 2.5 s 
and 8.6 s by IGA and EGA respectively, in evaluating sphe-
ricity error [158]. Wen et al. further used PSO algorithm 
for determining conicity error where each point is repre-
sented by an individual particle. When compared with IEA 
and GA on different datasets, the PSO algorithm provides 
improved conicity error value [159]. Xiulan et al. in their 
study proposed an improved GA for evaluating minimum 
zone sphericity error. The improved GA involves real-coded 
floating-point representation for each optimized variable. In 
addition, blend crossover operator was also incorporated in 
the basic GA procedure. The results showed improved GA 
takes less computation time and provide accurate error value 

of 0.00967 which is significantly smaller than the minimum 
zone solution (0.0132) [160].

Rossi et al. proposed a worst-case method for determining 
sphericity error which was assessed by heuristics such as 
GA, PSO, ACO and the results are compared with traditional 
LSM. The results on different datasets showed that proposed 
parameters of GA successfully evaluated and sphericity 
error, outperformed PSO, ACO and LSM [161]. Huang 
et al. in their study proposed a hybrid method combining 
heuristic search algorithm with feature points model (HAS-
FPM) for effective evaluation of sphericity error. It was 
revealed from results that the proposed approach improved 
solution by nearly 60% in comparison to intersecting chord 
method, energy method and IEA. In addition, the computa-
tion time by proposed method is 0.01 s only, while other 
method takes a higher order of time [162]. Xuyi and Ming 
presented the application of whale optimization algorithm 
(WOA) in evaluating the minimum zone sphericity error. 
The results when compared with IEA, EGA and IGA, the 
WOA provides better results with comparable accuracy in 
only 60 iterations [163]. Mao and Zhao tested the results on 
sphericity error and uncertainty verification based on GPS 
using PSO, GA and LSM. It was revealed that PSO accuracy 
is greater than LSM and comparable with GA. The other 
advantage of PSO over GA is its faster convergence speed 
towards optimal solution [164].

Huang et al. proposed a hybrid optimization technique 
integrating modified cuckoo search algorithm and an adap-
tive fuzzy logic controller (MCSF) for improved evaluation 
of sphericity error by enhancing the exploration of basic 
cuckoo search. The fuzzy logic aid in controlling the step 
size of cuckoo search thus enhancing diversification in basic 
version. The proposed MCSF approach provides 0.5 times 
value of sphericity error in 60 iterations in comparison to 
other heuristic methods [165]. Similarly, improvement in 
cuckoo search is performed in the study of Jiang et al. by 
incorporating levy flights and selective random walk mech-
anism in evaluation of minimum zone sphericity error. 
Both improvements maintains diversity in cuckoo search 
technique and further improve the global search ability. 
The results on large datasets proved that improved cuckoo 
search found accurate results with improved convergence 
in comparison to classical CS [166]. The study performed 
by Chen et al. used DE algorithm for evaluation of sphe-
ricity error. The results proved that evaluation accuracy of 
sphericity error was improved in comparison to tradition 
LSM approach [167]. Balakrishna et al. proposed a sup-
port vector machined based method for evaluating deviation 
of spherical parts. Some unique characteristics of SVM is 
applied and it was explored that number of datasets have no 
influence on the accuracy of SVM. In addition, the result 
on different examples concludes that SVM based method 
produced accurate sphericity deviation in comparison to 
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non-linear optimization approach [168]. Wang et al. pro-
posed an improved IEA (IIEA) algorithm for determining 
minimum zone conicity error. The quasi-random sequences 
were utilized for initial population and further self-adaptive 
mutation is performed to maintain the balance of explora-
tion and exploitation in proposed algorithm. The minimum 
zone conicity errors evaluated using IIEA method were 
accurate than CMM software by 20%-40% at a faster rate 
[169] (Table 5).

4 � Discussions

The evaluation process of different form errors based on 
minimum zone method through different computational 
techniques are discussed with noteworthy studies. Moreo-
ver, there are still several points that need to be considered 
for understanding the complexity involved in evaluation of 
form errors. Several researchers have utilized computational 
techniques for the determination of accurate form errors 
in different components features that are beneficial in the 
adequate performance of the individual components. The 
past literature study shows that authors have developed and 
utilized traditional techniques as well as advanced optimi-
zation algorithms for solving the non-linear and complex 
problems of form errors in metrology. Beginning with pla-
nar surface features i.e., straightness and flatness, the major 
traditional computational techniques applied are compu-
tational geometric technique based on convex hull, region 
elimination search, successive quadratic programming, 
Vectorial method, adaptive and iterative neighborhood-
based search strategy, Monte Carlo method, simplex search 
and data envelopment analysis. The good thing about these 
algorithms are they start with initial good solution and it 
improves over the course of iterations till the global opti-
mum solution is reached. The results of all such techniques 
provides robust results and provides unique solution. How-
ever, these traditional techniques seems to be complex 
making implementation of the procedure difficult and time 
consuming in deriving the optimal solution. In addition, 
these algorithms provides sub-optimal solutions and the 
estimated value realized were only approximation owing to 
the improper setting of different critical parameters. Fur-
thermore, these drawbacks are minimized by most of the 
advanced optimization algorithms considered for straight-
ness and flatness evaluation. The advanced optimization 
algorithms considered were genetic algorithm (GA), parti-
cle swarm optimization (PSO), Differential evolution (DE), 
artificial bee colony (ABC), artificial fish swarm algorithm 
(AFSA), cuckoo search (CS) and improvement in these algo-
rithms for obtaining optimal solutions. These algorithms are 
well known, and accepted optimization algorithm employed 
in different applications over the years by scholars and 

researchers of respective domains [170–176]. The GA and 
DE are known as evolutionary algorithms, while PSO, ABC, 
CS and AFSA are recognized as swarm intelligence-based 
algorithms. All aforementioned algorithms have good con-
vergence rate, flexibility, simplicity, suitable in high dimen-
sions problem and accuracy in obtaining global optimal 
solutions [177]. Due to these advantages, such algorithms 
are widely used in metrology form error evaluation and have 
given more accurate solutions that are by far superior to 
traditional computational geometry-based techniques as is 
evident from discussion of previous sections. Additionally, 
it overcomes the disadvantage of traditional algorithm to get 
stuck in local optimal solution by maintaining the trade-off 
between exploration and exploitation capability.

Since the importance of circular features are well known 
and discussed in literature, thus evaluation of circularity 
and cylindricity have become an integral and challenging 
task in metrology. The circular feature form errors were also 
determined by different traditional and advanced optimiza-
tion algorithms. The traditional algorithms utilized were 
mostly similar to what used for planar feature form error 
evaluation. However, some new traditional techniques such 
as Hybrid coordinate point transformation and Chebyshev 
approximation, steepest descent search, Geometric Approxi-
mating Searching Algorithm (GASA) and Increment-sim-
plex algorithm were utilized in computation of circularity 
and cylindricity. These algorithms are mostly an approxi-
mation and gradient based algorithms which found good 
results as compared to LSM, have simplicity, and requires 
less computation. However, the approximations and better 
results than LSM does not guarantee optimal solution for 
form errors, also their performance depends on some pre-set 
parameters. The gradient based algorithm found it difficult 
to obtain exact solution as the number of design variable 
increases, computational speed is low and may fall in local 
optimum. Now, to overcome these issues authors in past 
years utilized advanced optimization algorithms that suc-
cessfully improved their results in case of circularity and 
cylindricity. Mostly, the improvement or hybridization of 
algorithms are proposed for maintaining the diversification 
and intensification in the new hybrid algorithm and thus 
improving the solution quality of circular feature form error. 
Some of the important hybrid or improved optimization 
algorithms employed for circularity and cylindricity evalu-
ation are Hybrid simulated annealing (SA)- Hooke–Jeeves 
pattern search, Constriction factor PSO (CFPSO) algorithm, 
Improved harmony search (IHS) algorithm, Greedy sine 
cosine algorithm with differential evolution (HGSCADE), 
ABC algorithm with Tabu search, Hybrid PSO and Chaos 
search etc. These aforementioned hybridization and 
improvements were introduced owing to the drawbacks 
in working of algorithms based on single concepts such 
as slow convergence rate, local optimum stagnation, and 
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Table 5   Summary of Computational techniques on Sphericity and conicity error evaluation

Computational technique Description Recommendation References

Computational geometric techniques Traditional 
compu-
tational 
techniques

When compared with other methods in literature and 
have unique solution with faster computation time

[144]

Geometry optimization searching algorithm (GOSA) The proposed method provides accurate, fast convergence 
and depends on pre-set factor δ

[145]

Minimum radial separation (MRS) method Provides accurate sphericity error value with minimum 
computation time

[146]

Sequential quadratic programming (SQP) method Greater accuracy and better computational time in com-
parison to LSM

[147]

Primal dual interior method Better results and applied less computational effort for 
global optimal solution in comparison to SQP and 
heuristic method

[148]

Intersection chord method Sphericity error determined were similar to the published 
methods, however significant reduction in computation 
time was achieved

[149, 150]

Asymptotic search method Evaluated sphericity error accurately and efficiently for 
large number of extracted datasets

[151]

Branch and bound (B&B) algorithm Computationally fast, effective and provides exact results [152]
Method based on transformation matrices Proposed method found quick and accurate results when 

compared with other traditional methods
[153]

Selective zone search technique Provides accurate values and takes less computation time 
in comparison to non-linear optimization technique

[154]

Chebyshev approximation method Proposed method showed 0.0032 as conicity error in 
comparison to 0.0035 by LSM

[155]

Branching and approximation algorithm Provides same result as traditional technique while taking 
only 0.12 s

[156]

Geometrical optimization searching algorithm (GOSA) Conicity error results were better than CMM results [157]
Immune evolutionary algorithm (IEA) Advanced 

optimiza-
tion algo-
rithms

IEA performed better than IGA in accuracy and takes 
only 2.2 s in comparison to 2.5 s and 8.6 s by IGA and 
EGA respectively

[158]

Particle swarm optimization (PSO) algorithm When compared with IEA and GA on different datasets, 
the PSO algorithm provides improved conicity error 
value and enhanced convergence

[159]

Improved Genetic algorithm (GA) Takes less computation time and provide accurate error 
value of 0.00967 which is significantly smaller than the 
minimum zone solution (0.0132)

[160]

GA, PSO, ACO based on worst case method GA successfully evaluated and sphericity error, outper-
formed PSO, ACO and LSM

[161]

Heuristic search algorithm with feature points model 
(HAS-FPM)

Improved solution by nearly 60% in comparison to inter-
secting chord method, energy method and IEA

[162]

Whale optimization algorithm (WOA) When compared with IEA, EGA and IGA, the WOA 
provides better results with comparable accuracy in 
only 60 iterations

[163]

PSO, GA and LSM PSO accuracy is greater than LSM and comparable with 
GA. The other advantage of PSO over GA is its faster 
convergence speed towards optimal solution

[164]

Modified cuckoo search algorithm and an adaptive fuzzy 
logic controller (MCSF)

Provides 0.5 times value of sphericity error in 60 itera-
tions in comparison to other heuristic methods

[165]

Improved cuckoo search Improved cuckoo search found accurate results with 
improved convergence in comparison to classical CS

[166]

Differential evolution (DE) algorithm Evaluation accuracy of sphericity error was improved in 
comparison to tradition LSM approach

[167]

Support vector machined method SVM based method produced accurate sphericity devia-
tion in comparison to non-linear optimization approach

[168]

Improved IEA (IIEA) algorithm Accurate results than CMM software by 20–40% and at a 
faster rate

[169]
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inadequate balance between exploration–exploitation. The 
simulated annealing algorithm has good exploration, how-
ever, lacks good exploitation capability thus combined with 
Hooke–Jeeves pattern search for improving it. The constric-
tion factor was introduced in PSO algorithm for enhancing 
the convergence characteristics, harmony search improved 
by altering certain parameters for improving evaluation 
accuracy along with convergence. The classical sine cosine 
algorithm also suffers from insufficient exploitation and pre-
mature convergence which was provided by DE to provide 
adequate balance and improve the performance. Similarly, 
Tabu search and chaos enhances the global search ability in 
ABC and PSO algorithm respectively. These hybridization 
improves both convergence speed and solution quality that is 
evident from the results of circularity and cylindricity error 
improved values in comparison to their basic version and 
traditional computational techniques.

The sphericity and conicity errors have significant 
influence on the functional performance of rotational 
components, thus different traditional techniques were 
discussed in this literature. The new computational 
techniques considered includes Minimum radial sepa-
ration (MRS) method, Branch and bound (B&B) algo-
rithm, Sequential quadratic programming (SQP) method, 
Selective zone search etc. while others are already used 
in aforementioned form errors. The MRS method also 
a geometric based technique which provides mathemati-
cal approximation to obtain the solution. The branch and 
bound may provide suboptimal solution and spend much 
time in middle regions thus it never reaches to an opti-
mal value [178]. The SQP method depends on the initial 
starting points thus effective in local search in design 
space and lacks exploration of design solution. The selec-
tive zone search method effectiveness depends on the 
zones considered for searching of solutions, In addition, 
for larger selection area, the computation time will also 
increase. The new advanced optimization algorithms apart 
from earlier considered for sphericity or conicity includes 
immune evolutionary algorithm (IEA) and its improve-
ment, whale optimization algorithm (WOA) and support 
vector machine method. The IEA has good exploitation 
however, it also lacks search capability thus improvement 
is needed for enhancing the search and convergence per-
formance. The WOA is one of the recent optimization 
algorithm that mimics the behaviour of humpback whales 
[179]. The WOA has effective balance between explora-
tion and exploitation that is evident from the accurate 
results obtained for sphericity error. Moreover, the sup-
port vector machines are well-known machine learning 
techniques that focused on balancing the model accuracy 
and its prediction ability, utilized in effective prediction 
of form errors and provide results better than traditional 
techniques. In addition, researchers are advised to go 

through some recently proposed important advanced opti-
mization algorithm that may be beneficial in enhancing 
the accuracy of form evaluation process [180–199]. The 
comparison of some of used computational techniques for 
various form error evaluation is reported in Table 6 based 
on certain important criteria.

5 � Conclusions and Recommendations

The present review focused on providing detailed and com-
prehensive review on application of traditional methods as 
well as advanced optimization algorithms for evaluation of 
different form errors. In metrology, the accurate determina-
tion of these errors is challenging and imperative for enhanc-
ing the functional performance of features, components, and 
assemblies. Thus, evaluation of these form errors requires 
efficient methods and solution. In the same context, more 
than 150 literatures have been studied, examined, and ana-
lyzed using different computational techniques in evalua-
tion of various form error. Based on above discussions and 
extensive literature review on different computational tech-
niques i.e., traditional methods and advanced optimization 
algorithms, used for evaluation of metrology form errors, 
some suggestions and future directions are provided below:

	 1.	 Most of the traditional methods were based on geom-
etry-based techniques that requires low computational 
effort, have moderate complexity, and have better accu-
racy than conventional LSM method.

	 2.	 Since the geometry-based techniques are higher, there 
is a good probability of encountering human error, in 
addition it may amplify further during its implementa-
tion as the iteration increases. Thus, it is suggested to 
apply or explore for more analytical models.

	 3.	 Also, a software based on these geometry-based tech-
niques may also be developed having specific process-
ing for individual techniques that will enhance the 
usage of such techniques in industries.

	 4.	 The classical version of advanced optimization algo-
rithm such as GA, PSO, AFSA, ABC, DE and CS are 
mostly employed for realizing the solution of non-lin-
ear minimum zone fitness functions. It is worth noting 
that though all the algorithms are moderately accu-
rate and requires similar computational effort in their 
implementation. However, as the number of datasets 
increased, the computational effort requirement and 
complexity may also increase.

	 5.	 It is advisable to linearize the non-linear fitness func-
tion of different form errors (such as using Taylor 
expansion) so that traditional methods may enhance 
their results.
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	 6.	 The hybrid advanced optimization algorithm proposed 
for different form error evaluation have higher com-
plexity but at the same time provided more accurate 
results in comparison to classical algorithms and tradi-
tional methods owing to better balance between explo-
ration and exploitation behaviour.

	 7.	 Thus, on seeing the effectiveness of finite hybrid 
optimization algorithms in efficiently obtaining the 
near exact values of form errors, it may be suggested 
to combine more traditional algorithms with classi-
cal single optimization algorithm for better results 
such as done with Hybrid simulated annealing (SA) 
and Hooke–Jeeves pattern search and AFSA-Powell 
method

	 8.	 There is an urgent need to use machine learning tech-
niques and six sigma techniques for determination of 
form errors as very few have utilized such techniques 
for enhancing the overall accuracy.

	 9.	 Most of the studies on form error determination were 
based on extraction of data points using conventional 
CMM. However, with advancement of three-dimen-
sional scanners and their accuracy in collecting point 
data from any surface, it is a challenge to use these 

data for evaluation of form error using some sampling 
techniques.

	10.	 Most of the studies involve determination of straight-
ness, flatness, circularity, cylindricity, sphericity using 
different techniques, however very few obtained the 
angular and conicity error. Thus, determination of 
these errors is significant for future studies as these 
features are now becoming common in most of indus-
trial parts.
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